摘要:
The present invention is related to an dispersion compensating optical fiber technology, comprising a central core, a middle part with a refractive index lower than this central core, and a cladding with a refractive index higher than said middle part and lower than said central core, characterized in: an outer diameter of said middle part being 2.5.about.3.5 times an outer diameter of said central core; a relative refractive index difference of said cladding to said middle part being -0.08.about.-0.2% with the refractive index of the cladding being zero; and having substantially single-mode transmission in the wavelength 1.55 .mu.m band, the chromatic dispersion being -80 ps/nm/km or less, the dispersion slope being +0.08 ps/nm.sup.2 /km or less, and the bending loss being 1.0 dB/m or less.
摘要:
A dispersion compensating optical fiber includes an uncovered dispersion compensating optical fiber containing a core and a cladding, and a resin coating which is disposed around the uncovered dispersion compensating optical fiber, wherein the resin coating has an adhesive property of 10 g/mm or less, and which includes an outer coating layer which is formed to have a thickness of 3 μm or more, and the outer diameter of the uncovered dispersion compensating optical fiber is in a range from 90 to 125 μm, and the outer diameter of the dispersion compensating optical fiber is in a range from 180 to 250 μm.
摘要:
A dispersion compensating optical fiber for NZ-DSFs, includes: an uncovered dispersion compensating optical fiber; a double-layered resin coating disposed around the uncovered dispersion compensating optical fiber; and an outer coating layer having a thickness of 3 to 7 μm, containing silicone in an amount of 1 to 5% by weight, and disposed around the double-layered resin coating. The outer diameter of the uncovered dispersion compensating optical fiber is in a range from 90 to 125 μm, an outer diameter of the dispersion compensating optical fiber is in a range from 180 to 250 μm, and the amount of silicone contained in the outer coating layer is determined such that an adhesive property of the outer coating layer is 1 gf/mm or less.
摘要:
A dispersion compensating optical fiber for NZ-DSFs, includes: an uncovered dispersion compensating optical fiber; a double-layered resin coating disposed around the uncovered dispersion compensating optical fiber; and an outer coating layer having a thickness of 3 to 7 μm, containing silicone in an amount of 1 to 5% by weight, and disposed around the double-layered resin coating. The outer diameter of the uncovered dispersion compensating optical fiber is in a range from 90 to 125 μm, an outer diameter of the dispersion compensating optical fiber is in a range from 180 to 250 μm, and the amount of silicone contained in the outer coating layer is determined such that an adhesive property of the outer coating layer is 1 gf/mm or less.
摘要:
The polarization-maintaining optical fiber 10 of the present invention is designed so that a plurality of core portions 12a,12b which have a high refractive index is provided in parallel along a single diameter direction in the cross section of the optical fiber, these core portions 12a,12b cooperating to propagate a single fundamental mode. In the production method for the polarization-maintaining optical fiber of the present invention, a plurality of holes 22 are formed longitudinally in parallel along a single diameter direction of a glass rod 21 having a low refractive index which forms the cladding, glass rods 23 for core use having a high refractive index which form the core portions are inserted into these holes 22, heating to form a unitary body is carried out, creating a preform which is then drawn. Further, the rare-earth-doped polarization-maintaining optical fiber of the present invention uses a rare earth element to dope the optical waveguide portion of the polarization-maintaining optical fiber, and can be employed in a light amplifier or laser oscillator. Moreover, the polarization-maintaining optical fiber coupler of the present invention is formed by bringing two or more polarization maintaining optical fibers into contact, heating, fusing and elongating them, and heating the vicinity of the connection point before and after connection.
摘要:
An optical fiber is fabricated with a refractive index profile having a central core; a middle part provided around the outer periphery of the central core and having a lower refractive index than that of the central core; and a cladding provided around the periphery of the middle part and having a higher refractive index than the middle part and a lower refractive index than the central core. This optical fiber has an effective core area of 120 μm2 or more in an employed wavelength band selected from the range of 1.53˜1.63 μm, and has a cut-off wavelength that is capable of substantially single mode propagation in the aforementioned employed wavelength band. As a result, it is possible to construct an optical transmission system having excellent transmission characteristics in which nonlinearity is decreased.
摘要:
A hole-assisted holey fiber is provided. The holey fiber includes a core region; a cladding region around the core region, and a plurality of holes in the cladding region around the core region. The core region has a higher refractive index than that of the cladding region. The holes form an inner hole layer and an outer hole layer, and the inner hole layer has the same number of holes as the number of the holes in the outer hole layer. The outer layer holes are provided in locations in which inner holes are absent when viewed from the center of the core region, and holes defining the same layer have the same diameter. A distance Λ1 from a center of the core region to a center of an inner hole and a distance Λ2 from the center of the core region to a center of an outer hole satisfy the relationship Λ1
摘要翻译:提供孔辅助多孔纤维。 多孔纤维包括芯区域; 围绕芯区域的包层区域,以及围绕芯区域的包层区域中的多个孔。 芯区域具有比包层区域更高的折射率。 孔形成内孔层和外孔层,内孔层的孔数与外孔层的孔数相同。 外层孔设置在从芯区域的中心观察时不存在内孔的位置,并且限定相同层的孔具有相同的直径。 从芯部区域的中心到内部孔的中心距离λ1到从芯部区域的中心到外部中心的距离λ2<2 < 孔的内径满足关系Lambda 1 N 2 N 2和内孔的直径d 1 N 2,直径d 2 < SUB>满足关系d 1 SUB >> = d 2 2。
摘要:
In fusion-splicing a dispersion compensating optical fiber having a negative dispersion slope, with a connection optical fiber having a different near field pattern from that of the dispersion compensating optical fiber, if for the connection optical fiber, one is selected such that a theoretical joint loss in a used wavelength, obtained from an overlap integral of a near field pattern of the dispersion compensating optical fiber after fusion splicing and a near field pattern of the connection optical fiber after fusion splicing is presumed to be 0.3 dB or less, in an unconnected state, a construction enabling connection at a low loss results.
摘要:
A dispersion compensating fiber, which has a negative dispersion slope with a large absolute value while maintaining the absolute value of the chromatic dispersion, and which has sufficient dispersion slope compensation properties even for the non-zero dispersion shifted optical fiber requiring a large RDS for dispersion compensation. In this dispersion compensating fiber, the radius of a ring core region is set in a range from 6.7 μm to 10.7 μm, the radius ratio of a depressed core region relative to a central core region is set in a range from 2.0 to 3.0, and the radius ratio of the ring core region relative to the depressed core region is set in a range from 1.3 to 2.0, the relative refractive index difference of the central core region relative to the cladding is set in a range from +1.00% to +1.80%, the relative refractive index difference of the depressed core region relative to the cladding is set in a range from −1.20% to −1.50%, and the relative refractive index difference of the ring core region relative to the cladding is set in a range from +0.20% to +0.50%.
摘要:
A connection method for a photonic crystal fiber for connecting the photonic crystal fiber and a fiber to be connected, the photonic crystal fiber including a cladding region having a number of microholes and a core region having a same refractive index as that of the cladding region, includes the steps of: abutting respective end faces of the photonic crystal fiber and the fiber to be connected each other; after the abutting, performing a main discharge in which an abutted portion is heated by an electric discharge under a first condition; and after the main discharge, performing an additional discharge in which the connection portion is heated by an electric discharge at least once under a second condition to increase a splice strength.