摘要:
Disclosed in an x-ray imaging device, which uses a Talbot-Lau interferometer, eliminates the effects on image quality of a reconstructed image that arises in such cases as when the direction of a multi-slit or each lattice slit is altered and imaging is performed, and provides reconstructed images favorable for diagnosis. When a plurality of moire images imaged with an imaging subject loaded onto a imaging subject stand (13) and a plurality of moire images imaged without the imaging subject are input, a control unit (51) of a controller (5) corrects signal value differences arising from variations in x-ray strength during imaging respectively between the plurality of moire images with the imaging subject and between the plurality of moire images without the imaging subject, and respectively creates a reconstructed image with the imaging subject and a reconstructed image without the imaging subject. Then, the control unit (51) creates a reconstructed image of the imaging subject for diagnosis by correcting, on the basis of the reconstructed image without the imaging subject, image unevenness in the reconstructed image with the imaging subject caused by heterogeneity in light distribution caused by the angle of rotation of the multi-slit.
摘要:
Disclosed in an x-ray imaging device, which uses a Talbot-Lau interferometer, eliminates the effects on image quality of a reconstructed image that arises in such cases as when the direction of a multi-slit or each lattice slit is altered and imaging is performed, and provides reconstructed images favorable for diagnosis. When a plurality of moire images imaged with an imaging subject loaded onto a imaging subject stand (13) and a plurality of moire images imaged without the imaging subject are input, a control unit (51) of a controller (5) corrects signal value differences arising from variations in x-ray strength during imaging respectively between the plurality of moire images with the imaging subject and between the plurality of moire images without the imaging subject, and respectively creates a reconstructed image with the imaging subject and a reconstructed image without the imaging subject. Then, the control unit (51) creates a reconstructed image of the imaging subject for diagnosis by correcting, on the basis of the reconstructed image without the imaging subject, image unevenness in the reconstructed image with the imaging subject caused by heterogeneity in light distribution caused by the angle of rotation of the multi-slit.
摘要:
The apparatus includes: an X-ray source a multi slits element a first grating; a second grating; a driving section; a subject placing plate: and an X-ray detector, in which conversion elements to convert intensities of X-rays received thereby to electric signals, are arranged in a two-dimensional pattern so as to read the electric signals as image signals. The driving section moves the multi slits element relative to both the first grating and the second grating in a first direction orthogonal to a second direction of irradiating the X-rays, so that the X-ray detector repeats a processing for reading the electric signals converted from the intensities of X-rays received thereby, every time when the multi slits element moves at predetermined intervals so as to acquire the image signals representing Moire images captured at the predetermined intervals.
摘要:
Disclosed is a novel X-ray image capturing apparatus to which the Talbot-Lau interferometer is applied. The apparatus includes: an X-ray source a multi slits element a first grating; a second grating; a driving section; a subject placing plate: and an X-ray detector, in which conversion elements to convert intensities of X-rays received thereby to electric signals, are arranged in a two-dimensional pattern so as to read the electric signals as image signals. The driving section moves the multi slits element relative to both the first grating and the second grating in a first direction orthogonal to a second direction of irradiating the X-rays, so that the X-ray detector repeats a processing for reading the electric signals converted from the intensities of X-rays received thereby, every time when the multi slits element moves at predetermined intervals so as to acquire the image signals representing Moire images captured at the predetermined intervals.
摘要:
A medical image display system is shown. The medical image display system includes, a fringe scanning type capturing apparatus or a Fourier transformation type capturing apparatus; an image processing section; a display section; and a control section. The capturing apparatus includes, an X-ray source; a first grating and a second grating; a subject table; and an X-ray detector. The image processing section generates a plurality of reconstructed images for diagnosis based on an image signal of a subject captured with the capturing apparatus. The display section displays at least two of the plurality of reconstructed images. The control section detects an abnormal candidate on each of the plurality of reconstructed images and controls display order of the plurality of reconstructed images displayed on the display section based on a result of detecting.
摘要:
The present invention provides a method for displaying medical images and a medical image display system that do not require a medical practitioner to move his/her line of sight at the time of comparing/interpreting images and that can improve accuracy in diagnosis. According to the medical image display system of the present invention: an X-ray imaging device captures an image of a subject according to a first imaging mode by a fringe-scanning imaging device or a second imaging mode by a Fourier transform imaging device; a controller creates at least two images from among an X-ray absorption image, a differential phase image, and a small-angle scattering image on the basis of the captured moire image; and said at least two images that have been created are displayed in turn in the same position on a display section.
摘要:
The present invention provides a method for displaying medical images and a medical image display system that do not require a medical practitioner to move his/her line of sight at the time of comparing/interpreting images and that can improve accuracy in diagnosis. According to the medical image display system of the present invention: an X-ray imaging device captures an image of a subject according to a first imaging mode by a fringe-scanning imaging device or a second imaging mode by a Fourier transform imaging device; a controller creates at least two images from among an X-ray absorption image, a differential phase image, and a small-angle scattering image on the basis of the captured moir image; and said at least two images that have been created are displayed in turn in the same position on a display section.