摘要:
A magnetic recording medium includes a substrate having a surface where a texture is formed along a recording direction; a first underlayer formed on the surface of the substrate and made of Cr or CrMn; a second underlayer formed on the first underlayer and made of CrMn; a third underlayer formed on the second underlayer and made of Cr—X1 alloy wherein X1 includes a material selected from the group consisting of Mo, Ti, W, V, Ta, and Nb; and a recording layer formed on the third underlayer and made of a ferromagnetic material whose main ingredient is Co; wherein content of Mn of the second underlayer is greater than content of Mn of the first underlayer if the first underlayer is made of CrMn; and a total of film thicknesses of the first underlayer and the second underlayer is in a range between 2 nm and 7 nm.
摘要:
A magnetic recording medium includes a substrate, an underlayer of a chromium alloy formed on the substrate, a ferromagnetic layer formed on the underlayer, a spacer layer formed on the ferromagnetic layer, and a recording layer of a cobalt-chromium alloy formed on the spacer layer. The spacer layer is formed with a ruthenium-cobalt-based alloy.
摘要:
A longitudinal magnetic recording medium includes, in order from a nonmagnetic substrate, a primary coat layer that contains Cr, an intermediate layer, a magnetic layer as a recording layer made of CoCr alloy, and a protective layer, the intermediate layer including a RuCr intermediate layer made of a RuCr alloy that contains 10 to 50 at % of Cr.
摘要:
This magnetic recording medium comprising at least a non-magnetic underlayer on a non-magnetic substrate, a first recording magnetic layer on the non-magnetic underlayer, a second recording magnetic layer on the first recording magnetic layer, and a third recording magnetic layer on the second recording magnetic layer. The first recording magnetic layer, the second recording magnetic layer and the third recording magnetic layer are made of a CoCrPtB alloy. The second recording magnetic layer has a smaller Cr content and a greater B content than the first recording magnetic layer, and the third recording magnetic layer has a smaller Cr content and a greater B content than the first recording magnetic layer and a smaller Pt content than the second recording magnetic layer. The magnetic recording medium according to the present invention can obtain high output medium characteristic with low noise and excellent written performance.
摘要:
A magnetic recording medium and a magnetic recording medium driving apparatus are disclosed. By providing a plurality of intermediate layers made of a CoCr alloy of which saturation magnetic flux densities are controlled within a predetermined range, the magnetic recording medium, and the magnetic recording medium driving apparatus, realize a high S/Nm and thermal stability.
摘要:
A method for manufacturing a magnetic recording medium including a nonmagnetic substrate, an intermediate layer over the nonmagnetic substrate, and a granular magnetic layer for recording information, disposed on the intermediate layer. The method includes sputtering a Co alloy, a Ti oxide, a Si oxide and a Co oxide simultaneously to form the granular magnetic layer containing Co alloy magnetic particles and an oxide magnetically separating the magnetic particles.
摘要:
A magnetic recording medium is provided with a substrate, and a magnetic layer made of a CoCr-based alloy and having a multi-layer structure and disposed above the substrate. The multi-layer structure has a first magnetic layer disposed above the substrate and at least one second magnetic layer disposed on the first magnetic layer on an opposite side from the substrate. The first magnetic layer has a Cr-content larger than that of the second magnetic layer, and has a larger sum total content of nonmagnetic elements which are other than Cr and have a larger atomic radius than Co than the second magnetic layer.
摘要:
Disclosed is a magnetic recording medium comprising a substrate, a magnetic recording layer formed on the substrate to record magnetic information, and a piezoelectric material disposed adjacent to the magnetic recording layer and capable of contracting and expanding. Preferably, piezoelectric members made of the piezoelectric material are formed in such a manner as to be spaced a predetermined distance apart from each other on the substrate in a direction crossing a track on the magnetic recording layer, and the magnetic recording layer is formed between the piezoelectric members. When subjected to laser light or ultraviolet radiation, the piezoelectric material contracts or expands at least in the direction crossing the track. The piezoelectric material is selected from the group consisting of lead lanthanum zirconate titanate, barium titanate, and potassium niobate.
摘要:
This perpendicular magnetic recording medium has a nonmagnetic substrate and a magnetic recording structure formed above the substrate. The magnetic recording structure has at least a soft magnetic underlayer, an intermediate layer and a magnetic layer. The substrate has a surface profile curve whose angle of inclination is 2.0 degree or less, or whose surface roughness of the substrate, with cycle (wavelength components) in the ranges of 83 nm or less to 30 nm or less, is 0.15 nm or less.
摘要:
A magnetic recording medium for high areal recording density that has excellent thermal fluctuation resistance and recording/reproduction characteristics, and a method of producing the same. The magnetic recording medium includes a glass substrate, an NiP layer having an oxide film on its surface provided on the glass substrate, a ground layer provided on the NiP layer, and a nonmagnetic intermediate layer provided on the ground layer. The magnetic recording medium further includes an exchange layer structure composed of a ferromagnetic layer and a nonmagnetic coupling layer provided on the nonmagnetic intermediate layer, and a magnetic recording layer provided on the exchange layer structure. The oxide film on the NiP layer is formed by introducing a small quantity of oxygen into a vacuum chamber of a sputter device. The formation and oxidation of the NiP layer are conducted at a temperature of not less than 140° C.