摘要:
A single cell for SOFC operating at low temperatures is provided, including a first solid electrolyte with oxide ion conductivity at 800° C. of 0.015 S/cm or more and bending strength of 600 MPa or more, a fuel electrode and bonded to one side of the first electrolyte, comprised of a cermet of a catalyst and a second solid electrolyte with a conductivity of 0.08 S/cm or more, and an air electrode bonded to the other side of the first electrolyte comprised of a compound of first perovskite type oxide with a third solid electrolyte. The electrodes are coated with fuel and air electrode contact layers, respectively.
摘要:
A ceramic sheet has a burr height on the periphery of the sheet of ±100 μm or less and/or a dimple height on the sheet surface of 100 μm or less, as determined by irradiating the sheet with a laser beam to measure reflected light, and three-dimensionally analyzing the reflected light with a laser optical three-dimensional profiling instrument. This sheet is highly resistant to stacking-induced loads and thermal stresses. Further, when the ceramic sheet includes a zirconia ceramic partially stabilized with 2.8 to 4.5% by mole of yttria and containing 0.1 to 2% by mass of at least one dispersed reinforcing oxide, in which the grain size of the surface of the sheet has an average of 0.1 to 0.4 μm, a maximum of 0.4 to 0.8 μm, and a coefficient of variation of 30% or less, which grain size is determined by scanning electron microscopic observation, the ceramic sheet has satisfactory strength at room temperature and at high temperatures and satisfactory durability of strength at high temperatures. The ceramic sheet is very useful as, for example, a solid-electrolyte film of a solid oxide fuel cell.
摘要:
The present invention provides the first package (10) for brittle sheets, which comprises the brittle sheets (12) which are placed in a state of multiple layers and the end cushioning materials (20) (20) which are larger than the outer shape of the brittle sheets (12) and whose elasticity range from 2 to 100 mm and which are placed at both ends of the brittle sheets of lamination. The present invention also provides the second package for brittle sheets, which comprises the brittle sheets which are placed in a state of multiple layers, and the side cushioning material whose proof compressive load is not less than 1960 N in vertical direction and not less than 98 N in lateral direction and which is placed at the side of the said brittle sheets of lamination.
摘要:
The method of the present invention for producing a solid electrolyte sheet for a solid oxide fuel cells is characterized in comprising steps of obtaining a large-sized thin zirconia green sheet by molding and drying a slurry containing zirconia particles, a binder, a plasticizer and a dispersion medium; pressing the zirconia green sheet in the thickness direction with a pressure of not less than 10 MPa and not more than 40 MPa; firing the pressed zirconia green sheet at 1200 to 1500° C.; and controlling a time period when a temperature is within the range of from 500° C. to 200° C. to not less than 100 minutes and not more than 400 minutes when cooling the sheet after firing.
摘要:
A single cell for SOFC operating at low temperatures is provided, including a first solid electrolyte with oxide ion conductivity at 800° C. of 0.015 S/cm or more and bending strength of 600 MPa or more, a fuel electrode and bonded to one side of the first electrolyte, comprised of a cermet of a catalyst and a second solid electrolyte with a conductivity of 0.08 S/cm or more, and an air electrode bonded to the other side of the first electrolyte comprised of a compound of first perovskite type oxide with a third solid electrolyte. The electrodes are coated with fuel and air electrode contact layers, respectively.
摘要:
A single cell for SOFC operating at low temperatures, is provided, including a first solid electrolyte with oxide ion conductivity at 800° C. of 0.015 S/cm or more and bending strength of 600 MPa or more, a fuel electrode and bonded to one side of the first electrolyte, comprised of a cermet of a catalyst and a second solid electrolyte with a conductivity of 0.08 S/cm or more, and an air electrode bonded to the other side of the first electrolyte comprised of a compound of first perovskite type oxide with a third solid electrolyte. The electrodes are coated with fuel and air electrode contact layers, respectively.
摘要:
A single cell for SOFC operating at low temperatures, excellent in generating performance and reliability even in a low-temperature region of the order of 600 to 900° C., and in adhesion to a separator with low current-collecting loss when used in SOFC. The cell has a first solid electrolyte with oxide ion conductivity at 800° C. of 0.015 S/cm or more and bending strength of 600 MPa or more, a fuel electrode comprised of a cermet of a catalyst and a second solid electrolyte with the conductivity of 0.08 S/cm or more, bonded to one side of the first electrolyte, and an air electrode comprised of a compound of first perovskite type oxide with a third solid electrolyte, bonded to the other side optionally via an intermediate layer comprised of a fourth solid electrolyte, and the electrodes are preferably coated with fuel and air electrode contact layers, respectively.
标题翻译:生产SCANDIA-STABILIZED ZIRCONIA SHEET,SCANDIA-STABILIZED ZIRCONIA SHEET THE PROCEDING THE PROCESSING AND SCANDIA-STABILIZED ZIRCONIA SINTERED POWDER的方法
摘要:
The process for production of a scandia-stabilized zirconia sheet according to the present invention is characterized in comprising the steps of pulverizing a scandia-stabilized zirconia sintered body to obtain a scandia-stabilized zirconia sintered powder having an average particle diameter (De) determined using a transmission electron microscope of more than 0.3 μm and not more than 1.5 μm, and an average particle diameter (Dr) determined by a laser scattering method of more than 0.3 μm and not more than 3.0 μm, and a ratio (Dr/De) of the average particle diameter determined by the laser scattering method to the average particle diameter determined using the transmission electron microscope of not less than 1.0 and not more than 2.5; preparing a slurry containing the scandia-stabilized zirconia sintered powder and a zirconia unsintered powder, wherein a percentage of the scandia-stabilized zirconia sintered powder to a sum of the scandia-stabilized zirconia sintered powder and the zirconia unsintered powder in the slurry is not less than 2 mass % and not more than 40 mass %; forming the slurry into a greensheet; and sintering the greensheet.
摘要:
An electrolyte sheet for solid oxide fuel batteries with mechanical strength characteristics is proposed. These characteristics may include a high and stable average value of strength, Weibull coefficient, and a high adhesion to an electrode formed on a surface thereof and hence inhibits the electrode from interfacial separation from the electrolyte sheet. The electrolyte sheet for solid oxide fuel batteries is characterized by having a plurality of concaves and/or convexes on at least one surface thereof, the concaves and convexes having base faces which are circular or elliptic or are a rounded polygon in which the vertexes have a curved shape with a curvature radius of 0.1 μm or larger and/or the concaves and convexes having a three-dimensional shape which is semispherical or semiellipsoidal or is a polyhedron in which the vertexes and the edges have a curved cross-sectional shape having a curvature radius of 0.1 μm or larger.
摘要:
The present invention relates to a method of producing a scandia-stabilized zirconia sheet. The method includes the steps of: (1) pulverizing a scandia-stabilized zirconia sintered body to obtain a sintered scandia-stabilized zirconia powder having an average particle diameter (De), determined by a transmission electron microscope, in the range of 0.3-1.5 μm, and an average particle diameter (Dr), determined by a laser scattering method, in the range of 0.3-3.0 μm, where a ratio of Dr/De is at least 1.0-2.5; (2) preparing a slurry containing the sintered scandia-stabilized zirconia powder and an unsintered zirconia powder, where a percentage of the sintered scandia-stabilized zirconia powder to a sum of the sintered scandia-stabilized zirconia powder and the unsintered zirconia powder in the slurry is at least 2 mass % and at most 40 mass %; (3) molding the slurry into a green sheet; and (4) sintering the green sheet.