摘要:
The present invention relates to a method of producing a scandia-stabilized zirconia sheet. The method includes the steps of: (1) pulverizing a scandia-stabilized zirconia sintered body to obtain a sintered scandia-stabilized zirconia powder having an average particle diameter (De), determined by a transmission electron microscope, in the range of 0.3-1.5 μm, and an average particle diameter (Dr), determined by a laser scattering method, in the range of 0.3-3.0 μm, where a ratio of Dr/De is at least 1.0-2.5; (2) preparing a slurry containing the sintered scandia-stabilized zirconia powder and an unsintered zirconia powder, where a percentage of the sintered scandia-stabilized zirconia powder to a sum of the sintered scandia-stabilized zirconia powder and the unsintered zirconia powder in the slurry is at least 2 mass % and at most 40 mass %; (3) molding the slurry into a green sheet; and (4) sintering the green sheet.
摘要:
A graphite film showing an extremely low average tearing force is more likely to suffer from various kinds of defects, such as splitting, winding deviation, wrinkling, and poor dimensional accuracy, in a step of producing the graphite film and in a step of processing the graphite film. However, these defects can be prevented by using a graphite film that satisfies the following requirements: 1) having an average tearing force of not more than 0.08 N as determined by Trouser tear method in accordance with JIS K7128; and 2) having sag of not less than 5 mm and not greater than 80 mm as determined by a method of film windability evaluation in accordance with JIS C2151.
摘要:
A composition for injection molding includes: an inorganic powder composed of at least one of a metal material and a ceramic material; and a binder containing a polyacetal-based resin and an ethylene-glycidyl methacrylate-based copolymer. In the composition, the ethylene-glycidyl methacrylate-based copolymer is contained in an amount of 1% by mass or more and 30% by mass or less with respect to the amount of the polyacetal-based resin.
摘要:
The present invention provides compositions and methods for converting hazardous waste glass into safe and usable material. In particular, the present invention provides compositions and methods for producing ceramic products from toxic-metal-containing waste glass, thereby safely encapsulating the metals and other hazardous components within the ceramic products.
摘要:
A method of manufacturing a cut-out sintered ceramic sheet including forming a ceramic green sheet, sintering the formed ceramic green sheet, adhering a plastic resin film onto which adhesive is applied on at least one surface of the sintered ceramic sheet, and shearing the sintered ceramic sheet.
摘要:
A method of making a near-net superhard material body includes preparing granules from a mixture of superhard powder, binders, and fluids, compacting the granules to form a soft green complex-shaped body, heating the soft green body in a furnace to form a hard green body free from residual binders, embedding one or more of the hard green bodies in a containment powder or a containment means and forming a pressure cell, sintering the cell at high pressure and high temperature, and removing the containment powder from the cell or removing the inserts from the containment means to reveal one or more near-net bodies.
摘要:
A composition for injection molding includes: an inorganic powder composed of at least one of a metal material and a ceramic material; and a binder containing a polyacetal-based resin, an unsaturated glycidyl group-containing polymer, and a lubricant. In the composition, the unsaturated glycidyl group-containing polymer is contained in an amount of 1% by mass or more and 30% by mass or less with respect to the amount of the polyacetal-based resin.
摘要:
Disclosed are methods and materials useful in the preparation of semiconductor devices. In particular embodiments, disclosed are methods for engineering polycrystalline aluminum nitride substrates that are thermally matched to further materials that can be combined therewith. For example, the polycrystalline aluminum nitride substrates can be engineered to have a coefficient of thermal expansion (CTE) that is closely matched to the CTE of a semiconductor material and/or to a material that can be used as a growth substrate for a semiconductor material. The invention also encompasses devices incorporating such thermally engineered substrates and semiconductor materials grown using such thermally engineered substrates. The thermally engineered substrates are advantageous for overcoming problems caused by damage arising from CTE mismatch between component layers in semiconductor preparation methods and materials.
摘要:
A Mn—Zn ferrite core includes a basic component, sub-components, and unavoidable impurities, wherein, as the sub-components, silicon oxide (in terms of SiO2): 50 to 400 mass ppm and calcium oxide (in terms of CaO): 50 to 4000 mass ppm are added to the basic component consisting of iron oxide (in terms of Fe2O3): 51.0 to 54.5 moil, zinc oxide (in terms of ZnO): 8.0 to 12.0 moil, and manganese oxide (in terms of MnO): balance; amounts of phosphorus, boron, sulfur, and chlorine in the unavoidable impurities are reduced as follows, phosphorus: less than 3 mass ppm, boron: less than 3 mass ppm, sulfur: less than 5 mass ppm, and chlorine: less than 10 mass ppm; and a ratio of a measured specific surface of the Mn—Zn ferrite core to an ideal specific surface of the Mn—Zn ferrite core satisfies: Measured specific surface/ideal specific surface
摘要:
A method for controlling the dimensional shrinkage or growth of AT honeycomb structures during the firing process by control of the alkali metal ion content in the AT-forming batch materials extruded into an AT green body structure that is heated to form the fired AT honeycomb structure.