摘要:
A steam turbine 10 is comprised of a double-structured casing configured of an outer casing 21 and an inner casing 20, a turbine rotor 23 disposed through the inner casing and having a plurality of stages of moving blades 22 implanted, and a plurality of stages of stationary blades 25 disposed alternately with the moving blades 22 in the axial direction of the turbine rotor 23 in the inner casing 20. The steam turbine 10 is further provided with a discharge passage 30 which externally guides steam, which has flown in the inner casing and passed the final stage moving blades while performing expansion work, directly from the inner casing interior.
摘要:
A steam turbine 10 is comprised of a double-structured casing configured of an outer casing 21 and an inner casing 20, a turbine rotor 23 disposed through the inner casing and having a plurality of stages of moving blades 22 implanted, and a plurality of stages of stationary blades 25 disposed alternately with the moving blades 22 in the axial direction of the turbine rotor 23 in the inner casing 20. The steam turbine 10 is further provided with a discharge passage 30 which externally guides steam, which has flown in the inner casing and passed the final stage moving blades while performing expansion work, directly from the inner casing interior.
摘要:
A steam turbine has a stationary section, a turbine rotor, nozzle diaphragms, a steam passage section, a nozzle box and a sealing. The stationary section includes a casing. The turbine rotor includes moving blade stages. Each of the moving blade stages has turbine moving blades. Each of the nozzle diaphragms has turbine nozzles. The moving blade portions and the turbine nozzle portions constitute the steam passage. The nozzle box is held by the stationary section and arranged at an upstream side of the steam passage coaxially with the turbine rotor. The sealing divides a space between the turbine rotor and the casing into a first space provided at an inner side and a second space provided at an outer side of the nozzle box.
摘要:
A steam turbine has a stationary section, a turbine rotor, nozzle diaphragms, a steam passage section, a nozzle box and a sealing. The stationary section includes a casing. The turbine rotor includes moving blade stages. Each of the moving blade stages has turbine moving blades. Each of the nozzle diaphragms has turbine nozzles. The moving blade portions and the turbine nozzle portions constitute the steam passage. The nozzle box is held by the stationary section and arranged at an upstream side of the steam passage coaxially with the turbine rotor. The sealing divides a space between the turbine rotor and the casing into a first space provided at an inner side and a second space provided at an outer side of the nozzle box.
摘要:
A steam turbine comprises, in combination, at least two of a high pressure turbine section, an intermediate pressure turbine section and a low pressure turbine section in a single turbine casing and the steam turbine generally satisfies such design requirements as: a main steam pressure of 100 kg/cm2 or more; a main steam temperature of 500° C. or more; a rated output (power) of 100 MW or more; and a unit rotated at a rotation speed of 3,000 rpm equipped with a last-stage movable blade of the turbine having an effective blade length of 36 inches or more, or a unit rotated at a rotation speed of 3,600 rpm equipped with a last-stage movable blade of the turbine having an effective blade length of 33.5 inches or more. In such steam turbine, a turbine exhaust chamber of the low pressure turbine section has a structure extending towards both sides of a transverse direction of the turbine casing, towards the upper side thereof or in the axial direction thereof.
摘要翻译:蒸汽涡轮机组合地包括单个涡轮机壳体中的高压涡轮部分,中压涡轮机部分和低压涡轮机部分中的至少两个,并且蒸汽涡轮机通常满足以下设计要求:主蒸汽压力 100kg / cm 2以上; 主蒸汽温度为500℃以上; 额定输出(功率)为100MW以上; 并且以3000rpm的转速旋转的单元配备有具有36英寸或更大的有效叶片长度的涡轮机的最后一级可动叶片,或以3606rpm的转速旋转的单元,其具有最后阶段 涡轮机的可动叶片具有33.5英寸或更大的有效叶片长度。 在这种蒸汽轮机中,低压涡轮机部分的涡轮机排气室具有朝向涡轮机壳体的横向两侧朝向其上侧或其轴向方向延伸的结构。
摘要:
There is provided a protection device for a turbine exhaust chamber and a condenser, having, a condenser, a turbine exhaust chamber casing covering the steam turbine and the condenser, an atmosphere discharge disc for discharging atmosphere when a pressure reaches a first predetermined value, a temperature measuring unit for measuring a temperature in the turbine exhaust chamber casing, a first setter for setting a second predetermined value, an output unit for producing an external output, based on the measured temperature and the second predetermined value, when a pressure corresponding to the temperature becomes higher than or equal to the second predetermined value related to pressure or when the temperature becomes equal to or higher than the second predetermined value related to temperature, and a releasing unit for releasing the steam in the turbine exhaust chamber casing to an exterior when the output unit produces the external output.
摘要:
In a start-up method of a single shaft combined cycle power plant, during a time period from when the gas turbine is started up to when rotation speed of the gas turbine reaches a rotation speed allowing self-sustained operation using the combustion gas, auxiliary steam from the start-up boiler is fed to the low-pressure steam turbine via the low-pressure turbine steam supply pipe by controlling valve opening degree of the auxiliary steam flow control valve. The low-pressure steam turbine generates a drive force. Speed-up control is performed in a unified manner for the gas turbine, the high-pressure steam turbine, the low-pressure steam turbine, and the power generator.
摘要:
The positive input terminal (1), the negative input terminal (2) and the differential amplifier (10) are connected to the voltage converting circuit (9a). The differential amplifier (10) is composed of the operational amplifier (6) and the resistors (5a, 5b, 5c and 5d). The voltage converting circuit (9a) includes NPN transistors (91, 92 and 93). The base of the transistor (91) is connected to the positive input terminal (1) and the base of the transistor (92) is connected to the reference potential input end (3) to which the reference potential (V.sub.x) is applied, respectively. The collectors of the transistors (91 and 92) are connected to the potential point (81) in common and the emitters are connected to the other end of the resistor (5a). The base of the transistor (93) is connected to the negative input terminal (2), the collector is connected to the potential point (81) and the emitter is connected to the other end of the resistor (5c). It is prevented that the voltage applied to the differential amplifier (10) considerably differs from the desired value (V.phi.). The delay time of the output potential for a sharp change in the input voltage is shortened.