摘要:
A lithium-ion secondary battery 1 comprises an anode including a conductive anode active material containing layer containing an anode active material; a cathode including a conductive cathode active material containing layer containing a cathode active material; a nonaqueous electrolytic solution containing a lithium salt, propylene carbonate, and a linear carbonate; and a case accommodating the anode, cathode, and nonaqueous electrolytic solution in a closed state. The nonaqueous electrolytic solution further contains an additive satisfying the condition represented by expression (1): +0.9V≦(E2−E1)≦+2.5V, whereas the moisture content in the anode active material containing layer is regulated so as to satisfy the condition represented by expression (2): 40 ppm≦C1≦100 ppm. E1 is the standard electrode potential (V vs. SHE) of a redox pair Li/Li+, and E2 is the standard electrode potential (V vs. SHE) of a redox pair in the additive in expression (1); and Cl is the moisture content in 1 g of the material constituting the anode active material containing layer in expression (2).
摘要:
A lithium secondary battery comprising positive and negative electrodes both capable of occluding and releasing lithium ions, and a lithium ion conductive material which contains a compound of formula (1) exhibits improved characteristics including charge/discharge efficiency, low-temperature properties and cycle performance when (a) only one substituent group of R1, R2, R3 and R4 in formula (1) is alkyl, (b) the negative electrode-constituting material partially contains a carboxyl or hydroxyl group-bearing compound, and the lithium ion conductive material contains propylene carbonate, or (c) a positive electrode active material is a lithium-containing transition metal compound, a negative electrode active material is a carbonaceous material, and the lithium ion conductive material contains as a non-aqueous electrolysis solution a solvent mixture of propylene carbonate and ethylene carbonate in combination with a chain-like carbonate as a low-viscosity solvent
摘要:
A nonaqueous solvent in a nonaqueous electrolytic solution in a lithium-ion secondary battery 1 contains propylene carbonate (PC), a first compound expressed by formula (I), and a second compound expressed by formula (II). The content of PC in the nonaqueous solvent is at least 10 volume %. The content X [mass %] of the first compound and the content Y [mass %] of the second compound simultaneously satisfy the conditions represented by expressions (1) and (2) [2≦(X+Y)≦8 (1), 0.01≦(Y/X)≦0.30 (2)]. R1 to R6 in formula (I) indicate any of a hydrogen atom and hydrocarbon groups having a carbon number of 1 to 3, whereas R7 and R8 in formula (II) indicate any of a hydrogen atom and hydrocarbon groups having a carbon number of 1 to 3.
摘要:
A lithium secondary battery comprising positive and negative electrodes both capable of occluding and releasing lithium ions, and a lithium ion conductive material which contains a compound of formula (1) exhibits improved characteristics including charge/discharge efficiency, low-temperature properties and cycle performance when (a) only one substituent group of R1, R2, R3 and R4 in formula (1) is alkyl, (b) the negative electrode-constituting material partially contains a carboxyl or hydroxyl group-bearing compound, and the lithium ion conductive material contains propylene carbonate, or (c) a positive electrode active material is a lithium-containing transition metal compound, a negative electrode active material is a carbonaceous material, and the lithium ion conductive material contains as a non-aqueous electrolysis solution a solvent mixture of propylene carbonate and ethylene carbonate in combination with a chain-like carbonate as a low-viscosity solvent.
摘要:
A nonaqueous solvent in a nonaqueous electrolytic solution in a lithium-ion secondary battery 1 contains propylene carbonate (PC), a first compound expressed by formula (I), and a second compound expressed by formula (II). The content of PC in the nonaqueous solvent is at least 10 volume %. The content X [mass %] of the first compound and the content Y [mass %] of the second compound simultaneously satisfy the conditions represented by expressions (1) and (2) [2≦(X+Y)≦8 (1), 0.01≦(Y/X)≦0.30 (2)]. R1 to R6 in formula (I) indicate any of a hydrogen atom and hydrocarbon groups having a carbon number of 1 to 3, whereas R7 and R8 in formula (II) indicate any of a hydrogen atom and hydrocarbon groups having a carbon number of 1 to 3.
摘要:
A lithium-ion secondary battery device comprises a positive electrode collector having a surface formed with a positive electrode active material layer containing a positive electrode active material; a negative electrode collector having a surface formed with a negative electrode active material layer containing a negative electrode active material; an electrically insulating porous separator; and an electrolyte containing a lithium salt and being in contact with the positive electrode active material layer, negative electrode active material layer, and separator. The negative electrode active material is a carbon material having a graphite structure. The amount of the carbon material supported by the negative electrode active material layer is 2.0 to 4.0 mg/cm2. The graphite structure in an X-ray diffraction pattern of the carbon material exhibits a peak intensity P101 of (101) plane and a peak intensity P100 of (100) plane having a ratio (P101/P100) of 2.0 to 2.8 therebetween.
摘要:
A lithium-ion secondary battery comprises a positive electrode collector having a surface provided with a positive electrode active material layer containing a positive electrode active material; a negative electrode collector having a surface provided with a negative electrode active material layer containing a negative electrode active material; an electrically insulating porous separator; and an electrolytic solution containing a lithium salt and infiltrating the separator. The negative electrode active material layer carries 2.0 to 6.0 mg/cm2 of the negative electrode active material. The separator has a porosity of 45% to 90% and a Gurley air permeance of less than 200 s/100 cm3.
摘要:
The method of charging a lithium ion secondary battery uses a lithium ion secondary battery comprising a positive electrode including a mixed metal oxide containing at least Li, Mn, and Ni as metal components as a positive electrode active material, a negative electrode, and a nonaqueous electrolytic solution containing a lithium salt; and includes a constant current charging step of carrying out constant current charging with a set charging current value I1 corresponding to a set value nC satisfying the condition represented by the expression of 2C≦nC≦60C, where C is a rated capacity value of the lithium ion secondary battery, and n is a number of 2 to 60.
摘要:
A lithium-ion secondary battery device comprises a positive electrode collector having a surface formed with a positive electrode active material layer containing a positive electrode active material; a negative electrode collector having a surface formed with a negative electrode active material layer containing a negative electrode active material; an electrically insulating porous separator; and an electrolyte containing a lithium salt and being in contact with the positive electrode active material layer, negative electrode active material layer, and separator. The negative electrode active material is a carbon material having a graphite structure. The amount of the carbon material supported by the negative electrode active material layer is 2.0 to 4.0 mg/cm2. The graphite structure in an X-ray diffraction pattern of the carbon material exhibits a peak intensity P101 of (101) plane and a peak intensity P100 of (100) plane having a ratio (P101/P100) of 2.0 to 2.8 therebetween.
摘要:
The positive electrode active material in accordance with the present invention is used for a positive electrode for a lithium-ion secondary battery, includes Li, Mn, Ni, Co, and O atoms, and has a substantially halite type crystal structure. Specifically, it is preferably expressed by LiaMnbNicCodOe, where a is 0.85 to 1.1, b is 0.2 to 0.6, c is 0.2 to 0.6, d is 0.1 to 0.5, and e is 1 to 2 (the sum of b, c, and d being 1). Because of such composition and crystal structure, the positive electrode active material of the present invention reduces the amount of elution of the battery into the liquid electrolyte and enhances the stability at a high temperature.