摘要:
Disclosed are a phosphor in which prevention of aging deterioration of luminance and prevention of deterioration of discharging characteristics are compatible, a method of manufacturing the phosphor, and a plasma display panel manufactured by using the phosphor. A phosphor of the invention containing Mn as an activator is one with Mn serving as a major emission, wherein a ratio of an activator concentration in a superficial portion of a phosphor particle to an activator concentration inside the phosphor particle is 0.3-0.7.
摘要:
Disclosed are a phosphor in which prevention of aging deterioration of luminance and prevention of deterioration of discharging characteristics are compatible, a method of manufacturing the phosphor, and a plasma display panel manufactured by using the phosphor. A phosphor of the invention containing Mn as an activator is one with Mn serving as a major emission, wherein a ratio of an activator concentration in a superficial portion of a phosphor particle to an activator concentration inside the phosphor particle is 0.3-0.7.
摘要:
Disclosed is a method of preparing a phosphor which exhibits superior optical characteristics and improved resistance to deterioration, comprising the steps of subjecting a phosphor precursor obtained by a liquid phase process to a first calcination under an oxygen-containing atmosphere at a prescribed temperature and then subjecting the calcined phosphor precursor to a second calcination at a temperature lower than the temperature of the first calcination.
摘要:
An objective is to provide a core/shell type particle phosphor exhibiting an optimal excitation wavelength for fluorescence observation and excellent emission luminance of PL, together with excellent durability, to which particles are produced so as to be suitable for the field of bio-nanotechnology. Disclosed is a core/shell type particle phosphor comprising a core particle phosphor and coated thereon, a shell made of a metal compound having a different composition from a composition constituting the core particle phosphor, wherein the core particle phosphor is a particle phosphor prepared by baking a precursor synthesized via a reactive crystallization method, satisfying a PL (photoluminescence) intensity ratio A of the core particle phosphor to the core/shell type particle phosphor, {PL intensity(core)/PL intensity(core/shell)}; 0.001≦A≦0.1, and a core/shell type particle diameter of at most 0.1 μm.
摘要翻译:目的是提供一种显示用于荧光观察的最佳激发波长的核/壳型粒子荧光体,并且PL的出色亮度优异,同时具有出色的耐久性,可以生产出适合于生物纳米技术领域的粒子。 公开了一种包含芯颗粒磷光体并涂覆在其上的核/壳型颗粒磷光体,由与构成芯颗粒磷光体的组成不同的组成的金属化合物制成的壳,其中核心颗粒磷光体是通过烘焙制备的颗粒磷光体 通过反应结晶法合成的前体,满足核心粒子荧光体的PL(光致发光)强度比A与核/壳型粒子荧光体{PL强度(核心)/ PL强度(核/壳))}。 0.001 <= A <= 0.1,核/壳型粒径为0.1μm以下。
摘要:
Disclosed is a method to produce a semiconductor nanoparticle which is excellent in monodispersibility and productivity. This method is characterized in that two or more kinds of semiconductor nanoparticles having different average particle diameters are dispersed in a solvent and mixed together, and then subjected to size classification.
摘要:
Disclosed are core/shell type semiconductor nanoparticles exhibiting a sufficient emission intensity without causing a blink phenomenon (blinking). The core/shell-type semiconductor nanoparticles have an average particle size of from 2 to 50 nm and comprise an intermediate layer between a core portion and a shell portion, wherein band gap widths of bulk crystals which have the same compositions as those of the core portion, the intermediate portion and the shell portion, respectively, are in the order of: core portion
摘要:
An objective is to provide a nanosized semiconductor particle having a core/shell structure in which a ratio of shell thickness/core portion particle diameter exhibits an optimal ratio in optical properties of optical elements. The particle comprising the structure in which shell portion has a thickness of not more than 1/2 of core portion particle diameter, wherein core portion has a particle diameter of less than 20 nm, and shell portion has a thickness of at least 0.2 nm; core portion has a particle diameter of 20-100 nm, and shell portion has a thickness of at least 1/100 of a core portion particle diameter; core portion possesses at least one element of B, C, N, Al, Si, P, S, Zn, Ga, Ge, As, Se, Cd, In, Sb and Te; and shell portion has a composition exhibiting a larger band gap than that of core portion.
摘要:
Disclosed is a fluorescent semiconductor particle having a core/shell structure composed of a core particle as a semiconductor particle, and a shell layer by which the core particle is covered, wherein the core particle has a different chemical composition from that of the shell layer; the core particle has an average particle diameter of 1-15 nm and a specific gravity of 1.0-3.0; and the fluorescent semiconductor particle having the core/shell structure has a specific gravity of 0.8-3.2
摘要:
A labeling fluorescent compound which enables highly stable detection in vital labeling and has high sensitivity. The labeling fluorescent compound is characterized by being composed of inorganic fluorescent nanoparticles which have a surface modification compound disposed on the surface thereof and have an average particle diameter of 1.0-20 nm. It is further characterized in that the proportion of the length of the surface modification compound as measured from the surface of the inorganic fluorescent nanoparticles to the particle diameter of the inorganic fluorescent nanoparticles is from 0.10 to 0.50, and that the proportion of the specific gravity of the inorganic fluorescent nanoparticles having the surface modification compound fixed thereto to the specific gravity of the inorganic fluorescent nanoparticles not having the surface modification compound is from 0.80 to 0.40.
摘要:
Disclosed are core/shell type semiconductor nanoparticles exhibiting a sufficient emission intensity without causing a blink phenomenon (blinking). The core/shell-type semiconductor nanoparticles have an average particle size of from 2 to 50 nm and comprise an intermediate layer between a core portion and a shell portion, wherein band gap widths of bulk crystals which have the same compositions as those of the core portion, the intermediate portion and the shell portion, respectively, are in the order of: core portion