摘要:
The apparatus for waste water treatment has, in a tank, a contact circulation part in which Bincho charcoal is accommodated, a sprinkling circulation part which is disposed above the contact circulation part and in which black coal is accommodated, air lift piping for lifting treatment-object water from the contact circulation part to the sprinkling circulation part, a water-sprinkling tube for sprinkling the treatment-object water onto the sprinkling circulation part, an aquatic plant cultivation bed disposed between the contact circulation part and the sprinkling circulation part, and air-diffusing tubes for introducing malodorous gas. Small quantity of surfactants and colorants are adsorbed by the Bincho charcoal and the black coal and decomposed by microorganisms that have grown in the Bincho charcoal and the black coal. The microorganisms act to biologically decompose the malodorous gas.
摘要:
The apparatus for waste water treatment has, in a tank, a contact circulation part in which Bincho charcoal is accommodated, a sprinkling circulation part which is disposed above the contact circulation part and in which black coal is accommodated, air lift piping for lifting treatment-object water from the contact circulation part to the sprinkling circulation part, a water-sprinkling tube for sprinkling the treatment-object water onto the sprinkling circulation part, an aquatic plant cultivation bed disposed between the contact circulation part and the sprinkling circulation part, and air-diffusing tubes for introducing malodorous gas. Small quantity of surfactants and colorants are adsorbed by the Bincho charcoal and the black coal and decomposed by microorganisms that have grown in the Bincho charcoal and the black coal. The microorganisms act to biologically decompose the malodorous gas.
摘要:
A first reaction/adjustment tank has a lower portion containing a calcium carbonate mineral, an upper portion containing a calcium carbonate mineral and a plastic filler, and an air lift pump for circulating waste water from the lower portion to the upper portion. Exhaust gas is introduced into a space. A second reaction/adjustment tank has a lower portion containing a calcium carbonate mineral and charcoal, and an upper portion containing charcoal and a plastic filler. Waste water circulates sequentially through the lower and upper portions of the first reaction/adjustment tank, and the lower and upper portions of the second reaction/adjustment tank. Exhaust gas circulates sequentially through the upper portion of the first reaction/adjustment tank and the upper portion of the second reaction/adjustment tank.
摘要:
A waste water treatment apparatus is provided which can treat a high-concentration waste water containing persistent chemical substances including nitrogen and surfactant simultaneously with small amount of exhaust gases and is yet simple in construction. The apparatus has a first bioreactor having a lower portion including an inflow pipe for admission of waste water to be treated and aeration means, and an upper portion packed with vinylidene chloride fillers; a second bioreactor including a filler-packed portion packed with charcoal and calcium carbonate fillers; and an exhaust gas introduction diffuser for directing exhaust gases generated in an uppermost portion of the first bioreactor into the filler-packed portion. The water under treatment is anaerobically treated in the lower portion and is subjected to aerobic treatment and also to anaerobic treatment in the upper portion. Further, in the second bioreactor, the water under treatment is again aerobically treated and, at the same time, the exhaust gases from the first bioreactor are also aerobically treated.
摘要:
A first reaction/adjustment tank has a lower portion containing a calcium carbonate mineral, an upper portion containing a calcium carbonate mineral and a plastic filler, and an air lift pump for circulating waste water from the lower portion to the upper portion. Exhaust gas is introduced into a space. A second reaction/adjustment tank has a lower portion containing a calcium carbonate mineral and charcoal, and an upper portion containing charcoal and a plastic filler. Waste water circulates sequentially through the lower and upper portions of the first reaction/adjustment tank, and the lower and upper portions of the second reaction/adjustment tank. Exhaust gas circulates sequentially through the upper portion of the first reaction/adjustment tank and the upper portion of the second reaction/adjustment tank.
摘要:
A wastewater treating apparatus has first, second and third bioreactors. Each bioreactor has, in an upper position, a reaction/sprinkling portion for exhaust gas treatment. The first bioreactor has, in a lower position, a submerged portion including an aerobic upper portion and an anaerobic lower portion. The aerobic upper portion includes a membrane filter. A membrane concentrated liquid produced by the membrane filter is introduced into a mixing tank. A mixture of an alcohol, fine powdered material and membrane concentrated liquid from the mixing tank is introduced, together with a developer-containing wastewater, into the anaerobic lower portion, so that a granular sludge is formed therein. The granular sludge contains anaerobic microorganisms in a high concentration level and is therefore capable of treating the wastewater without necessity of wastewater dilution or use of chemicals.
摘要:
A waste water treatment method and apparatus uses microorganism-containing sludge to treat waste water containing fluorine and does not utilize any chemical reaction. For waste water treatment, a treatment tank has an anaerobic part having sludge containing microorganisms and an aerobic part having sludge containing microorganisms and communicating with the anaerobic part. Waste water to be treated and biological excess sludge are introduced into the anaerobic part. Once treated by the microorganisms, the water is filtered by a membranous separation device in the aerobic part, and output as treated water. In the treatment tank, the microorganisms are moved between the anaerobic part and aerobic part to enhance their ability to concentrate or accumulate therein fluorine or other substances contained in the waste water.
摘要:
A nanobubble-containing liquid producing apparatus includes: a microbubble generating device that prepares a microbubble-containing liquid with use of a liquid introduced into a microbubble generation tank and discharges the microbubble-containing liquid into the microbubble generation tank; a micro-nanobubble generating device that prepares a micro-nanobubble-containing liquid with use of the microbubble-containing liquid introduced into a micro-nanobubble generation tank and discharges the micro-nanobubble-containing liquid into the micro-nanobubble generation tank; and a nanobubble generating device that prepares a nanobubble-containing liquid with use of the micro-nanobubble-containing liquid introduced into a nanobubble generation tank and discharges the nanobubble-containing liquid into the nanobubble generation tank. Therefore, an apparatus for producing a nanobubble-containing liquid with use of general-purpose products can be manufactured at low cost and in a short period of time.
摘要:
Drainage water containing an organofluorine compound is introduced into a raw tank (1) and then filtered through a filtration device (4). Next, a microorganism, a micro-nanobubbling auxiliary agent and a nutrient are added thereto in a first transit tank (5) while micro-nanobubbles are generated thereinto by a micro-nanobubbling machine (7), thereby giving treated water. This treated water is then fed into an active carbon column (14) and then the above-described organofluorine compound contained in the treated water is decomposed by the microorganism as described above.
摘要:
A first treatment tank (1) to a fourth treatment tank are installed prior to ultrapure water production apparatus (5), dilute wastewater recovering apparatus (34), general service water recovering apparatus and wastewater treatment apparatus. The treatment tanks (1, 2, . . . ) each have a micro-nano bubble generation tank (6, 23, . . . ) and an anaerobic measuring tank (7, 24, . . . ). Accordingly, microbes within the respective anaerobic measuring tanks (7, 24, . . . ) are activated by micro-nano bubbles generated in each micro-nano bubble generation tank (6, 23, . . . ) to thereby enhance the treatment efficiency of low-concentration organic matter. Further, when the value measured by dissolved oxygen meter (13, 30, . . . ) or oxidation-reduction potentiometer (14, 31, . . . ) of each anaerobic measuring tank (7, 24, . . . ) exceeds an individually determined given range, the rotational speed of a circulating pump (9, 26, . . . ) is controlled to thereby decrease the generation of micro-nano bubbles. Thus, the micro-nano bubble content in water undergoing treatment is held appropriate.