摘要:
A method includes executing a hypervisor (165) with computing hardware (105) to implement a virtual machine (175); responsive to detecting a removable storage medium (115) communicatively coupled to the computing hardware (105), executing a virtualized migration control appliance (180) through the hypervisor (165) separate from the virtual machine (175); and blocking the virtual machine (175) from accessing data (185) stored by the removable storage medium (115) with the virtualized migration control appliance (180) if at least one governing policy prohibits the virtual machine (175) from accessing the data (185).
摘要:
A method includes executing a hypervisor (165) with computing hardware (105) to implement a virtual machine (175); responsive to detecting a removable storage medium (115) communicatively coupled to the computing hardware (105), executing a virtualized migration control appliance (180) through the hypervisor (165) separate from the virtual machine (175); and blocking the virtual machine (175) from accessing data (185) stored by the removable storage medium (115) with the virtualized migration control appliance (180) if at least one governing policy prohibits the virtual machine (175) from accessing the data (185).
摘要:
A method is provided of creating an end-to-end entanglement (87) between qubits in first and second end nodes (81, 82) of a chain of optically-coupled nodes whose intermediate nodes (80) are quantum repeaters. Local entanglements (85) are created on an on-going basis between qubits in neighboring pairs in the chain through interaction of the qubits with light fields transmitted between the nodes. The quantum repeaters (80) are cyclically operated with their top-level operating cycles being synchronized. Once every top-level operating cycle, each repeater (80) initiates a merging of two entanglements involving respective repeater qubits that are at least expected to be entangled with qubits in nodes disposed in opposite directions along the chain from the repeater. A quantum repeater (80) adapted for implementing this method is also provided.
摘要:
A QKD transmission apparatus comprises a GPS receiver module operable to receive a GPS signal, and a processor operable to use the GPS signal to derive a clock signal for transmission of a QKD signal.
摘要:
A method is provided of creating an end-to-end entanglement (87) between qubits in first and second end nodes (81, 82) of a chain of optically-coupled nodes whose intermediate nodes (80) are quantum repeaters. Local entanglements (85) are created on an on-going basis between qubits in neighbouring pairs in the chain through interaction of the qubits with light fields transmitted between the nodes. The quantum repeaters (80) are cyclically operated with their top-level operating cycles being synchronized. Once every top-level operating cycle, each repeater (80) initiates a merging of two entanglements involving respective repeater qubits that are at least expected to be entangled with qubits in nodes disposed in opposite directions along the chain from the repeater. A quantum repeater (80) adapted for implementing this method is also provided.
摘要:
An authentication method is provided between entities (10A; 10B) having matching one-time pads each with multiple OTP blocks. From the standpoint of a first one (10A) of the entities, the method involves sending (20S) a challenge that it has generated (20) by subjecting a first OTP block to a randomly-selected member of a first family of hashing functions. Each member of the first hashing-function family is associated with a respective member of a second family of hashing functions. On receiving back a response, the first entity (10A) tests (26) whether the response originates from the second entity (10B) by seeking a match between the response and a reference value generated (25) by subjecting a predetermined said OTP block to the member of the second hashing-function family that is associated with the member of the first hashing-function family used to generate the challenge.
摘要:
To identify errored bits in a binary data set, an ordered plurality of modulo-2 summations of respective selections of the data-set bits are compared with a target syndrome. The selections of data-set bits are defined by the connection of sum nodes to variable nodes in a logical network of nodes and edges where each variable node is associated with a respective data-set bit and each sum node corresponds to a respective modulo-2 summation. Any sum node for which the corresponding summation of selected data-set bits is found to be inconsistent with the target syndrome is identified as errored. Predetermined patterns of errored sum nodes are then looked for to identify one or more associated errored data-set bits. The identified errored data-set bits can then be flipped to correct them
摘要:
A method of updating a data entry stored on a data storage unit, the data entry including data elements that are unique to the data storage unit and the data entry, the method comprising the steps of generating at the data storage unit an update request including the data entry for transmission to an authority authorised to update the data entry, extracting at the authority the unique data elements from the update request and verifying the authenticity of the data storage unit and data entry from the unique data elements, generating an updated data entry including a further data element unique to the updated data entry and derived from the updated data and transmitting the updated data entry to the data storage unit, and storing the updated data entry on the data storage unit.
摘要:
Various method and system embodiments of the present invention are directed to executing bit-commitment protocols. In one embodiment of the present invention, a method for executing a bit-commitment protocol for transmitting a bit from a first party to a second party comprises preparing a three qubits are entangled in a W-state, and storing a first of the three qubits in a first storage device controlled by the first party, a second of the three qubits is stored in a second storage device controlled by the second party, and a third of the three qubits is stored in a third storage device controlled by a third party. The bit is revealed to the second party by transmitting the first and third qubits to the second party and measuring the states of the three qubits to which of the entangled W-states the three qubits are in.
摘要:
A quantum key distribution (QKD) method involves the sending of random data from a QKD transmitter to a QKD receiver over a quantum signal channel, and the QKD transmitter and receiver respectively processing the data transmitted and received over the quantum signal channel in order to seek to derive a common random data set. This processing is effected with the aid of messages exchanged between QKD transmitter and receiver over an insecure classical communication channel. The processing concludes with a check, effected by an exchange of authenticated messages over the classical communication channel, that the QKD transmitter and receiver have derived the same random data set. At least some of the other messages exchanged during processing are exchanged without authentication and integrity checking. A QKD transmitter and QKD receiver are also disclosed.