Abstract:
A control system uses a wireless mesh network to provide communication between a host computer and field devices. Performance of the wireless mesh network is monitored by collecting network performance data from each node, such as the nodes with which it is communicating, received signal strengths over links to different nodes, the number of errors occurring on each link, and how frequently communication is occurring with each of the other nodes. A visual network map is generated using performance statistics based on the data gathered from the nodes of the wireless mesh network. The visual network map allows a user to determine the routes that messages take through the wireless mesh network, diagnose potential problems, and make adjustments to improve network performance.
Abstract:
A host computer communicates with field devices over a wireless network that includes a gateway and a plurality of wireless nodes. At least one of the field devices is associated with each wireless node, and each field device has a unique field device address. The host computer sends control messages to field devices using their field device addresses. The gateway translates the field device address of a control message to a wireless address of the wireless node with which the field device is associated. The gateway sends a wireless message over the network to the wireless node at the wireless address. The message contains the field device address so that, when the wireless message is received and opened, the control message from the host computer can be routed to the intended field device based upon the field device address.
Abstract:
An industrial process transmitter for transmitting a process variable on a two-wire process control loop include, a loop current control to control a loop current level on the two-wire process control loop that is related to the process variable. Power is provided to primary circuitry of the process transmitter. A secondary current control circuit limits current delivered to secondary circuitry.
Abstract:
An interface module for use in a process monitoring and control system has an Ethernet port, a controller, and at least one segment I/O module. The Ethernet port is adapted to send and receive signals in an Ethernet protocol over a cable comprising a plurality of wires and to receive a voltage potential from at least one pair of the plurality of wires. The controller is coupled to the Ethernet port and powered from the received voltage potential. The at least one segment I/O module is coupled to the controller and is adapted to couple to an associated field device segment with at least one attached field device. The at least one segment I/O module is adapted to interact with the at least one attached field device on the associated field device segment.
Abstract:
A field hardened industrial device is described with a housing of the device having electrically conductive walls surrounding a cavity with an open end. An electronics assembly is adapted to fit within the cavity. The device includes a circuit card assembly, which is a multi-layered printed wiring board with pass-through electrical connections and an embedded ground plane electrically coupled to the housing to shield the electronics assembly from electromagnetic interference and to provide environmental protection to the electronics assembly.
Abstract:
A host computer communicates with field devices by sending control messages and receiving response messages over a wireless network. When the host computer sends a control message to the wireless network, the host computer is provided with a predictive response time within which the field device receiving the message will respond. The wireless network cycles between a sleep state and an active state based upon a wireless network power cycle. The predicted response time is based upon the current state of the wireless network, the power cycle, and the time required for the field device to turn on, take an action (such as measuring a parameter), and generating a response message.
Abstract:
A field hardened industrial device is described with a housing of the device having electrically conductive walls surrounding a cavity with an open end. An electronics assembly is adapted to fit within the cavity. The device includes a circuit card assembly, which is a multi-layered printed wiring board with pass-through electrical connections and an embedded ground plane electrically coupled to the housing to shield the electronics assembly from electromagnetic interference and to provide environmental protection to the electronics assembly.
Abstract:
A field device system for use in an industrial process includes a field device configured to couple to the industrial process and monitor or control the industrial process. The field device provides a temperature control signal output related to a temperature of the field device. A heater coupled to the field device heats the field device in response to the temperature control signal.
Abstract:
A field device for use in an industrial process control or monitoring system includes terminals configured to connect to a two-wire process control loop configured to carry data and to provide power. In one embodiment, RF circuitry in the field device is configured for radio frequency communication having variable power consumption. In another embodiment, the RF circuitry is coupled to the field device through a separate digital communication bus. A method of modulating the power of RF communication based upon a process communication signal is also provided.
Abstract:
A process variable transmitter for use with a removable operator interface has a non-volatile memory and a latching component. The non-volatile memory stores device settings. The latching component prohibits changes to transmitter settings if the removable operator interface is absent. Circuitry in the transmitter detects the presence of the removable operator interface. The removable operator interface can include zero and span settings.