Abstract:
In order to produce a high-quality output of an image which is a mixture of images having different characteristics, there is provided an image processing apparatus having an image memory storing an entered color image and a feature detector, arranged for detecting a feature signal from the entered color image and storing the feature signal in the image memory. The feature signal represents a feature of the entered color image. An outputter is arranged for reading an image signal of the entered color image and the feature signal thereof out of the image memory, and outputting the image and feature signals as a recording signal. Processors are arranged for respectively processing one of a number of color components, which represent color image information, in accordance with the recording signal. The detection and storage in the image memory of feature signals and the readout of the image signal and associated feature signal from the image memory are performed in parallel.
Abstract:
Stored digital data is searched for on the basis of an input image, difference information is extracted by comparing the retrieved digital data and the input image, and the difference information is composited to the digital data. Digital data generated by composition is stored. When no digital data is retrieved, the input image is converted into vector data, and the image that has been converted into the vector data is stored as digital data. Obtained region segmentation information and an input image are composited, the composite image is displayed on an operation screen of an MFP, and a rectangular block to be vectorized is designated as a specific region from the displayed region segmentation information. A user designates the specific region by designating rectangular blocks in an image using a pointing device.
Abstract:
A rasterizer generates bitmap images of RGB on the basis of object data inputted from a printer driver and stores the result in an image memory. The rasterizer brings attribute information representing attributes of the input object data into correspondence with each pixel of the generated bitmap images to store in an attribute map memory. An image processing unit converts RGB bitmap images stored in the image memory into binary bitmap data for each of YMCK colors which can be processed by an image forming unit. The contents of conversion processing such as dither matrix for binarization processing are switched on the basis of the attribute information retained in the attribute map memory.
Abstract:
An image processing apparatus of the present invention inputs image data representing an image, discriminates whether the image represented by the input image data is a first predetermined image, and discriminates whether the image represented by the input image data is a second predetermined image different from the first predetermined image, the above-mentioned two discrimination performing discriminating operation parallelly.
Abstract:
An image processing apparatus includes a calculation unit configured to calculate an amount of a first coloring material (at least one of cyan, magenta, yellow and black) in an area including a plurality of pixels; a determination unit configured to determine an allowable amount of a second coloring material, being substantially colorless and transparent, in the area on the basis of the amount of the first coloring material, calculated by the calculation unit, and a limit of the amount of the coloring material; and a control unit configured to control an amount of the second coloring material in the area so as not to exceed the allowable amount of the second coloring material.
Abstract:
According to this invention, encoded data of a target data amount is generated by one image input operation while both lossless encoding and lossy encoding are adopted. For this purpose, a first memory stores encoded data of a shorter encode length among encoded data generated by a first encoding unit which performs lossy encoding and encoded data generated by a second encoding unit which performs lossless encoding. A second memory stores encoded data from a second encoding unit. When an encoding sequence control unit determines that the encoded data amount in the first memory has exceeded the target data amount, the encoding sequence control unit discards data in the first memory, sets a quantization parameter for a higher compression ratio for the first encoding unit, and causes the first encoding unit to execute encoding. Encoded data before the encoded data amount is determined to have exceeded the target data amount is re-encoded by a re-encoding unit.
Abstract:
Conventionally, a color-image processing apparatus, such as a computer, or the like, cannot determine whether or not color-image data stored in an image storage device, such as a hard disk, or the like, is an image corresponding to a specific original. According to the present invention, a color-image processing apparatus includes a determination unit for comparing color-image data stored in an image storage device with a pattern stored in a pattern storage device. The color-image data stored in the image storage device is read with a predetermined timing, and determination by the determination unit is performed. The color-image processing apparatus is a computer, and the image storage device is a hard disk.
Abstract:
Conventionally, a color-image processing apparatus, such as a computer, or the like, cannot determine whether or not color-image data stored in an image storage device, such as a hard disk, or the like, is an image corresponding to a specific original. According to the present invention, a color-image processing apparatus includes a determination unit for comparing color-image data stored in an image storage device with a pattern stored in a pattern storage device. The color-image data stored in the image storage device is read with a predetermined timing, and determination by the determination unit is performed. The color-image processing apparatus is a computer, and the image storage device is a hard disk.
Abstract:
A color image processing apparatus converts a first color signal (RGB signal) stored in a frame memory for displaying on, e.g., a CRT color monitor into a third color signal (R'G'B' signal) whose color image information is used for permanent visible representation by a printer, and outputs the third signal in order to effectively adjust differences between color gamuts of different devices. In the conversion processing, a conversion function for directly converting the first color signal into the third color signal is obtained by synthesizing three functions, namely, a first conversion function for converting the first color signal into a standard color space signal, a second conversion function for converting the standard color space signal into the third color signal, and a third conversion signal for converting the standard color space signal into another standard color signal suitable for a color gamut of the printer. The first color signal is converted into the third color signal in accordance with the new synthesized conversion function.
Abstract:
An image processing apparatus includes an input device for inputting image data representing an image. A first discriminating device discriminates whether the image represented by the input image data is a first predetermined image, and a second discriminating device discriminates whether the image represented by the input image data is a second predetermined image different from the first predetermined image. An output device combines discrimination results of the first and second discriminating devices and outputs a discrimination signal. The first and second discriminating devices perform the discriminating operations in parallel.