摘要:
A method of manufacturing a semiconductor device provides a semiconductor device with a gallium-nitride-based semiconductor structure that allows long-term stable operation without degradation in device performance. After formation of an insulation film on a surface other than on a ridge surface, an oxygen-containing gas such as O2, O3, NO, N2O, or NO2 is supplied to oxidize a p-type GaN contact layer from the surface and to thereby form an oxide film on the surface of the p-type GaN contact layer. Then, a p-type electrode that establishes contact with the p-type GaN contact layer is formed by evaporation or sputtering on the oxide film and on the insulation film. Heat treatment is subsequently performed at temperatures between 400 and 700° C. in an atmosphere containing a nitrogen-containing gas such as N2 or NH3 or an inert gas such as Ar or He.
摘要:
A method of manufacturing a semiconductor device is provided, which can reduce the contact resistance of an ohmic electrode to a p-type nitride semiconductor layer and can achieve long-term stable operation. In forming, in an electrode forming step, a p-type ohmic electrode of a metal film by successive lamination of a Pd film which is a first p-type ohmic electrode and a Ta film which is a second p-type ohmic electrode on a p-type GaN contact layer, the metal film is formed to include an oxygen atom. In the presence of an oxygen atom in the metal film, then in a heat-treatment step, the p-type ohmic electrode of the metal film is heat-treated in an atmosphere that contains no oxygen atom-containing gas.
摘要:
A method of manufacturing a semiconductor device provides a semiconductor device with a gallium-nitride-based semiconductor structure that allows long-term stable operation without degradation in device performance. After formation of an insulation film on a surface other than on a ridge surface, an oxygen-containing gas such as O2, O3, NO, N2O, or NO2 is supplied to oxidize a p-type GaN contact layer from the surface and to thereby form an oxide film on the surface of the p-type GaN contact layer. Then, a p-type electrode that establishes contact with the p-type GaN contact layer is formed by evaporation or sputtering on the oxide film and on the insulation film. Heat treatment is subsequently performed at temperatures between 400 and 700° C. in an atmosphere containing a nitrogen-containing gas such as N2 or NH3 or an inert gas such as Ar or He.