摘要:
A direct-drive-type multi-articulated robot comprising: a stationary support shaft (14), a cylindrical rotary casing (16) surrounding the stationary support shaft (14), a first robot arm (18) joined to the upper end (16a) of the rotary casing (16), a second robot arm (20) pivotally joined to the extremity of the first robot arm (18), a direct-drive motor (M.theta.) interposed between the lower end of the rotary casing (16) and the lower end of the stationary support shaft (14) to drive the rotary casing (16) and the first robot arm (18) together for turning motion, a brake gear (24) interposed between the upper end (14a) of the stationary support shaft (14) and the first robot arm (18) to arrest the turning motion of the first robot arm (18), and an encoder (26) for detecting turning motion, interposed between the upper end (14a) of the stationary support shaft (14) and the first robot arm (18).
摘要:
An articulated industrial robot has an articulated horizontal arm assembly which includes horizontal arms (20), a vertically movable shaft (20) mounted on the extremity of the horizontal arm assembly, and a motor for driving the vertically movable shaft. When directly teaching motions to the vertically movable shaft through a direct teaching operation by an operator, the current control unit of a motor control unit for driving the motor for driving the vertically movable shaft is disconnected from a signal line connected to a robot control unit, and a torque calculating circuit is provided for deciding a motor torque corresponding to the sum of the weight of the vertically movable shaft and the respective variable weights of an end effector attached to the lower end of the vertically movable shaft. A workpiece held by the end effector is connected to the current control unit to compensate the load torque of the vertically movable shaft with the torque of the motor so that the operator is able to carry out the direct teaching operation while substantially no load is imposed on the operator.
摘要:
A system for controlling a robot includes a control portion (7) for supplying a control signal to and receiving a control signal from a servo unit (6) for carrying out a signal supply and a signal feedback to an electric motor (5) for driving a shaft executing a Z-axis linear motion, and threshold value supply portion (8) for supplying a threshold value to the control portion. Based on a comparison between a motor torque instruction value and a threshold value supplied from the threshold value supplying portion, an alarm is delivered and the process subsequently proceeds to a step of dealing with an abnormal condition when said motor torque instruction value becomes greater than a predetermined threshold value.
摘要:
The robot control apparatus according to the present invention is so adapted that, with regard to all kinds of motions commanded of a robot, the maximum velocity and time constant conforming to the type of robot motion can be designated for respective robot control axes (3) by a controller (1) which includes a selection table memory (4).
摘要:
In an industrial robot employing electric motors (Mz, M.theta., Mu, Mw) as drive sources for driving functional robot units for movement respectively about articulatory axes (Z, .theta., U, W), electric drive currents supplied to the electric motors (Mz, M.theta., Mu, Mw) associated with the articulatory axes (Z, .theta., U, W) are detected by a current detecting unit (30), the detected electric drive current supplied to the electric motor (Mz, M.theta., Mu, Mw) associated with one selected articulatory axis among the articulatory axes (Z, .theta., U, W) is sampled every predetermined minute sampling time in a period between a first time and a second time in a robot control program for controlling the motions of the functional robot units respectively about the articulatory axes (Z, .theta., W), computing means (CPU) calculates the ratio of the root-mean-square value of the electric current supplied to the electric motor (Mz, M.theta., Mu, Mw) in the period between the first time and the second time to the rated current of the same electric motor, the root-mean-square values ratios each of the root-mean-square value to the rated current are displayed on a display (40 ) to enable an operator to ascertain the propriety of the motions of the functional robot units (16, 18, 20, 22, 24,) including robot arms.
摘要:
An arm structure for an industrial robot, comprising a first robot arm (16) supported on top of a vertical robot shaft (14), and a second robot arm (20) pivotally joined through a transmission-reduction gear box (18) to the free end of the first robot arm (16). A plurality of coupling bolts (22) are extended through the interior of the first robot arm (16), each coupling bolt (22) has one end (22b) fastened to the flange (18b) of the transmission-reduction gear box (18) and the other end (22a) projecting from and fastened to the rear end of the first robot arm (16). Fastening nuts (24) each engage at least one end (22a or 22b) of each coupling bolt (22) to couple the first robot arm (16) and the transmission-reduction gear box (18) so as to preload the first robot arm (16) by a compressive force.
摘要:
An industrial robot of the articulated arm type comprises a movable robot body (11) arranged on a base (10). An upper arm (13) having root and tip portions is rotatably pivoted to the robot body (11) at the root portion thereof. A forearm (16) having rear and front ends is rotatably pivoted to the tip portion of the upper arm (13) at a portion between the rear and front ends. Preferably, a wrist assembly (20) includes two moving elements (21,22) which are rotatable about different axes in relation to the front end of the forearm (16). The moving elements (21,22) of the wrist assembly (20) are rotated about the corresponding axes by means of wrist drive units (27, 28), respectively. The wrist drive units (27, 28) include first sprockets (29, 36), respectively, each rotatably arranged in the rear end of the forearm (16). Drive motors (31, 37), each rotating the first sprockets (33, 39), are arranged on the rear end of the forearm (16 ), respectively. Second sprockets (33, 39) are operatively coupled with the wrist assembly (20) and arranged in the front end of the forearm (16). Rotational movements of the first sprockets (29, 36) are transmitted through wrapping connectors (34, 45) to the second sprockets (33, 39), respectively. The wrapping connectors (34, 45) are of endless assemblies which include chains (46, 47) and rods (48, 49), respectively.
摘要:
A cable arranging device for an industrial robot has a cylindrical support casing (2), a swing casing (3) supported on the support casing (2) and swingable about the axis of a swing shaft, and cables (5) interconnecting the swing casing (3) and the support casing (2). One end of a substantially C-shaped cable guide (4) is pivotally supported in the swing casing on the axis of the swing shaft, the other end of the cable guide is pivotally supported in the support casing on the axis of the swing shaft. Spaces for allowing the cable guide (4) to swing therein through a prescribed angle are defined respectively in the swing casing (3) and the support casing (2).
摘要:
An industrial robot having replaceable modules assembled on a bed (2) housing a drive mechanism therein is composed of blocks (1, 3, 4, 5, 9) which comprise members of compatible common structures that can be selected and assembled as modules. The blocks have engagement portions compatible with those of modules of other specifications. Therefore, different robot specifications can easily be met, and the modules can be replaced with those modules which are effective in a wide range. The blocks of the industrial robot can easily be assembled and disassembled.
摘要:
An adaptive proportional-plus-integral control system for controlling a robot or a machine tool which is subject to large load variation. The PI control system comprises a speed control loop and a pre-compensator provided in the speed control loop. The pre-compensator is equivalent to a system which is the combination of a reference model and an inverse system of a servomotor, and has adaptivity. Since the pre-compensator is incorporated into the speed control loop, robust control can be made even if the inertia of a load is largely variable.