摘要:
In an image forming apparatus which is connected to a network (30), and forms an image on the basis of data acquired from the network, upon receiving a URL that designates image data to be acquired from a console, the URL is interpreted, and a data request is submitted to a server via the network on the basis of the interpretation result. Image data sent from the server in response to that data request is stored. If the image data is a JPEG image, an image process that warrants excellent tone reproduction is made; if the image data is a GIF image, an image process that warrants high resolution is made, and the processed image data is output to a printer to print it out.
摘要:
In an image forming apparatus which is connected to a network (30), and forms an image on the basis of data acquired from the network, upon receiving a URL that designates image data to be acquired from a console, the URL is interpreted, and a data request is submitted to a server via the network on the basis of the interpretation result. Image data sent from the server in response to that data request is stored. If the image data is a JPEG image, an image process that warrants excellent tone reproduction is made; if the image data is a GIF image, an image process that warrants high resolution is made, and the processed image data is output to a printer to print it out.
摘要:
To achieve the above objects, a communication apparatus for forming and outputting image data on the basis of data received via a network analyzes the contents of received electronic mail and extracts binary data encoded using character codes. The communication apparatus converts the extracted binary data into image data and outputs the data. The communication apparatus requests, where necessary, a server apparatus on the network to convert the binary data into the image data. If the conversion from the binary data into the image data is impossible, the communication apparatus reports this information to the source of the electronic mail in the same session as the electronic mail. The communication apparatus also generates a message from the reported information and transmits the message as electronic mail in a session other than the electronic mail.
摘要:
An image processing apparatus allows a user to obtain only data on a desirable WWW (World Wide Web) server and print the obtained data. The image processing apparatus, which accesses HTML (HyperText Markup Language) data on a WWW server in accordance with designated address information and which prints the HTML data, allows for requesting of a source that specifies the address information an acceptance for the accessing or printing of data other than those data that correspond to the designated address information and that are linked with the pertinent data, and when the acceptance requested cannot be obtained from the source that specifies the address information, halts access or printing of the data other than data that correspond to the designated address information and that are linked with the pertinent data.
摘要:
A method is provided for producing magnetic green compacts. Material powder including a rare earth alloy and containing not less than 15 mass % of fine particles with particle diameter of not more than 2 μm is filled into a compacting mold, then compacted and compressed, and subjected to magnetic fields to give a green compact. A powder compact having a packing density 1.05 to 1.2 times the bulk density is subjected to a weak magnetic field of 1 to 2 T to give a compact. The magnetic field strength is increased to not less than 3 T at an excitation rate of 0.01 to 0.15 T/sec, and the strong magnetic field of not less than 3 T is applied to the compact by a high-temperature superconducting coil. The magnetic field is applied by the high-temperature superconducting coil in a direction opposite to a direction applied by a normal conducting coil.
摘要:
The present invention provides a powder for a magnet which can form a rare earth magnet having excellent magnetic characteristics and which has excellent moldability, a method for producing the powder for a magnet, a powder compact, and a rare earth-iron-boron-based alloy material.Magnetic particles constituting a powder for a magnet each include a structure in which a particle of a phase 3 of a hydrogen compound of a rare earth element is dispersed in a phase 2 of an iron-containing material. Since the phase 2 of the iron-containing material is uniformly present in each of the magnetic particles 1, the powder has excellent moldability and easily increases the density of a powder compact 4. The powder for a magnet can be produced by heat-treating a powder of a rare earth-iron-boron-based alloy (R—Fe—B-based alloy) in a hydrogen atmosphere at a temperature equal to or higher than the disproportionation temperature of the R—Fe—B-based alloy to separate the powder into the rare earth element and the iron-containing material and to produce the hydrogen compound of the rare earth element. The powder compact 4 is produced by compacting the powder for a magnet. The powder compact 4 is heat-treated in a vacuum to produce a R—Fe—B-based alloy material 5, and the R—Fe—B-based alloy 5 is magnetized to produce a R—Fe—B-based alloy magnet 6.
摘要:
A soft magnetic material, a dust core, a method for manufacturing the soft magnetic material, and a method for manufacturing the dust core that can improve DC bias characteristics are provided.A soft magnetic material includes a plurality of metal magnetic particles 10 whose coefficient of variation Cv (σ/μ), which is a ratio of a standard deviation (σ) of a particle size of the metal magnetic particles 10 to an average particle size (μ) thereof, is 0.40 or less and whose circularity Sf is 0.80 or more and 1 or less. The metal magnetic particles 10 preferably have an average particle size of 1 μm or more and 70 μm or less. The soft magnetic material preferably further includes an insulating coated film that surrounds a surface of each of the metal magnetic particles 10.
摘要:
A soft magnetic material includes a plurality of composite magnetic particles (30) each including an iron-based particle (10) containing iron and an insulating coating film (20) surrounding a surface of the iron-based particle (10). The insulating coating film contains an organic group derived from an organic acid having at least one substance selected from the group consisting of titanium, aluminum, silicon, calcium, magnesium, vanadium, chromium, strontium, and zirconium. The at least one substance in the insulating coating film (20) is bonded to iron in the iron-based particles (10) through the organic group derived from the organic acid in the insulating coating film (20). Furthermore, a method for producing a soft magnetic material includes the steps of preparing the iron-based particles (10) containing iron and forming the insulating coating film (20) surrounding a surface of each of the iron-based particles (10). In the step of forming the insulating coating film, the organic acid containing the substance is brought into contact with the surfaces of the iron-based particles (10).
摘要:
The object of the present invention is to provide a powder core and method for making the same that is equipped with insulative coating having superior heat resistance, with the coating making it possible to adequately restrict the flow of eddy currents between particles.The powder core is equipped with a plurality of compound magnetic particles bonded to each other. Each of said plurality of composite magnetic particles includes: a metal magnetic particle 10; an insulative lower layer coating 20 surrounding a surface 10a of said metal magnetic particle 10; an upper layer coating 30 surrounding said lower layer coating 20 and containing silicon; and dispersed particles 50 containing a metal oxide compound and disposed in said lower layer coating 20 and/or said upper layer coating 30. A mean particle diameter R of the dispersed particles 50 meets the condition 10 nm
摘要:
A method of producing a soft magnetic material includes the steps of preparing soft magnetic powder containing a plurality of soft magnetic particles etching the soft magnetic powder to remove surfaces of the soft magnetic particles and, after the etching step, heat-treating the soft magnetic powder in a finely divided state at a temperature of not less than 400° C. and not more than 900° C. By this method configured as above, desired magnetic characteristics can be obtained.