摘要:
A scroll type compressor has a fixed scroll member, a movable scroll member, an oil reservoir, a back-pressure chamber, an oil extraction passage, a flow passage, and a partition wall. The back-pressure chamber disposed behind the movable scroll member is in communication with a discharge chamber. The oil extraction passage having a regulating valve or a throttle connects the back-pressure chamber to the oil reservoir. The oil return passage and the flow passage connect the oil reservoir to a suction chamber, respectively. The flow passage introduces excess lubricating oil into the suction chamber when the level of lubricating oil in the oil reservoir becomes higher than a predetermined level. The partition wall disposed between the openings of the oil extraction passage for restricting lubricating oil from the oil extraction passage other than the excess lubricating oil collected in the oil reservoir from flowing to the flow passage.
摘要:
Scroll compressor may include, for example, a stationary scroll, a drive shaft, a crank shaft coupled to the drive shaft, a bush coupled to the outer surface of the crank shaft and a movable scroll coupled to the crank shaft. The movable scroll is preferably disposed adjacent to the stantionary scroll. A boss may be coupled to the movable scroll and the boss preferably protrudes from the movable scroll at the opposite side of the stationary scroll. A seal is preferably disposed in a clerance defined between the bush and the boss. A compression chamber is defined by a space between the stationary scroll and the movable scroll. Fluid is compressed within the compression chamber when the movable scroll revolves or orbits with respect to the stationary scroll. A discharge port is preferably defined within the movable scroll and is adapted to discharge compressed fluid to a side that is opposite of the stationary scroll.
摘要:
The scroll type compressor includes a stationary and orbiting scroll members, of which the spiral elements are interfit at an offset angle to form line contacts defining at least one fluid pocket, and an anti-spin mechanism for causing the orbiting member to orbit within the stationary member. A drive shaft is rotatably supported in a housing, and has an outer end a cylindrical inner end and, depending upon the embodiment, either a crank pin or a sliding guide portion projecting axially inward from its inner end. A drive bush couples the drive shaft to the orbiting scroll member, and has either a circular aperture for receiving the crank pin or an engaging slotted recess for receiving the sliding guide portion, as the case may be, whereby the drive bush is either pivotable or slidable with respect to the drive shaft. A counterweight is mounted on either the crank pin or the sliding guide portion between the drive bush and the drive shaft, and is coupled to the drive bush for conjoint movement therewith. The counterweight has a cylindrical recess for receiving the cylindrical inner end of the drive shaft, with a clearance maintained between the radially inner perimeter of the recess and the radially outer perimeter of the inner end of the drive shaft, so as to allow the drive bush and counterweight either to pivot relative to the crank pin or to slide relative to the sliding guide portion, depending upon the embodiment.
摘要:
A compressor housing defines a motor accommodating chamber. The pressure in the motor accommodating chamber is equal to the pressure in a suction chamber. A first reservoir chamber is located in a discharge chamber. A second reservoir chamber is defined about the discharge chamber. A communicating passage connects the first reservoir chamber with the second reservoir chamber. A restrictor is located in the communicating passage. An oil return passage connects the second reservoir chamber with the suction chamber. A connecting passage connects the motor accommodating chamber with the suction chamber. Therefore, leakage of electricity is prevented.
摘要:
A scroll-type compressor having a stationary scroll and a movable scroll is provided. A compression chamber is defined between a stationary scroll and a movable scroll. A refrigerant introducing passage formed in the movable scroll for introducing a refrigerant from the compression chamber to a driving mechanism. The compressed refrigerant including a lubricant introduced through the passage is affective to lubricate the driving mechanism. The compressor may also include a sump to collect the lubricant leaving the driving mechanism. Collected lubricant is reintroduced into the compression region via a suction region of the compressor.
摘要:
Scroll compressors may preferably include a stationary scroll, a drive shaft, a crank shaft coupled to the drive shaft and a bush coupled to the outer surface of the crank shaft. A seal is preferably disposed between the bush and the crank shaft and the seal is elastically deformable in the radial direction of the crank shaft. A movable scroll may be coupled to the crank shaft and disposed adjacent to the stationary scroll. A compression chamber is defined by a space between the stationary scroll and the movable scroll, such that fluid is compressed within the compression chamber when the movable scroll revolves or orbits with respect to the stationary scroll. Further, a discharge port is preferably defined within the movable scroll and adapted to release the compressed fluid to a side that is opposite of the stationary scroll.
摘要:
A first lubricating oil passage and a second lubricating oil passage, extended from a contacting surface between a partition wall and a fixed scroll are formed in the partition wall (middle housing). A recess for communicating the first lubricating oil passage with the second lubricating oil passage is formed on the fixed scroll. Accordingly, the lubricating oil amount between the first lubricating oil passage and the second lubricating oil passage is easily controlled by adjusting the size of the recess.
摘要:
A scroll type compressor which includes a fixed scroll and an orbiting scroll. Each scroll includes an end plate, a spiral element, at least one airtight compression chamber formed between the fixed and orbiting scrolls, a discharge port, and a drive mechanism for revolving the orbiting scroll relative to the fixed scroll, for compressing fluid in the compression chamber. The fixed spiral element and the orbiting spiral element include relatively thick tip portions having oppositely disposed flat faces. These faces are arranged in such a way as to periodically approach each other during the revolution of the orbiting scroll. A buffer portion is provided on at least one of the flat faces of the fixed and orbiting tip portions, for preventing over-compression of the fluid trapped between the flat faces.
摘要:
An electric compressor has a compressor housing, a compression mechanism, an electric motor, an accommodating portion and a motor drive circuit. The compressor housing has a circumferential wall and a central axis. The compression mechanism is arranged in the compressor housing for compressing fluid. The electric motor is operatively connected to the compression mechanism for driving the compression mechanism. The accommodating portion is provided on an outer surface of the compressor housing and defines an accommodating space. The inner surface of the accommodating space includes a bottom surface and a side surface. The bottom surface is defined as a radially inward surface of the inner surface relative to the central axis. The side surface surrounds a periphery of the bottom surface. The bottom and side surfaces are defined by the compressor housing. The motor drive circuit is arranged in the accommodating space for driving the electric motor.
摘要:
An oil storage area (45a) is defined on the bottom of a motor chamber (45) of a scroll compressor (1). An oil transfer route (4a) is defined in the portion of a center housing (4) that corresponds to the storage area (45a). Lubricating oil L is separated from the discharged, compressed refrigerant by an oil separator (80) and the lubricating oil L is supplied to the backside of a movable scroll (20) due to a pressure differential within the compress (1). After lubricating a bearing (10), the lubricating oil L is temporarily stored in the storage area (45a) and then is transferred due to a pressure differential to the suction-side of a compression mechanism (21) via the oil transfer route (4a). The lubricating oil L is then transferred to the oil separator (80) together with the compressed refrigerant that is discharged from a compression chamber (32) of the compression mechanism (21). Thus, the lubricating oil L contained in the discharged, compressed refrigerant can be effectively separated from the compressed refrigerant and circulated to and from the back side of the movable scroll (20) in order to lubricate moving parts within the compressor (1) using the pressure differentials within the compressor (1).