Abstract:
Methods of superalloy article repair are provided. In some embodiments, a method for repairing a nickel-based superalloy article comprises providing a layered assembly over a damaged region of the nickel-based superalloy article, the layered assembly comprising a nickel-based superalloy preform, an infiltration alloy preform and a melting point depressant component. The layered assembly is heated to form a nickel-based filler alloy metallurgically bonded to the damaged region, wherein primary carbide and secondary carbide phases are present in the nickel-based filler alloy in a combined amount of 0.5 to 10 vol. %.
Abstract:
In one aspect, cobalt-based alloys are described herein comprising composition and microstructure permitting a balance of hardness, toughness and wear resistance desirable for wood cutting applications. A cobalt-based alloy comprises a chromium rich carbide phase in an amount of 15-30 volume percent, a tungsten-rich phase in an amount of 9-15 volume percent and a balance of cobalt-rich solid solution matrix comprising nickel, chromium, vanadium and tungsten.
Abstract:
A method of imparting high-temperature, degradation resistance to a component involving applying a metal slurry comprising a Co-based metallic composition comprising Co, Cr, W, Si, C, and B, a binder, and a solvent to a surface of the component, and sintering the Co-based metallic composition to form a substantially continuous Co-based alloy coating on the surface of the body.
Abstract:
In one aspect, cobalt-based alloys are described herein comprising composition and microstructure permitting a balance of hardness, toughness and wear resistance desirable for wood cutting applications. A cobalt-based alloy comprises a chromium rich carbide phase in an amount of 15-30 volume percent, a tungsten-rich phase in an amount of 9-15 volume percent and a balance of cobalt-rich solid solution matrix comprising nickel, chromium, vanadium and tungsten.
Abstract:
A surgical implant component comprising an implant component body manufactured from a Co-based substrate alloy comprising Co, Cr, Mo, Si, and C, and a coating on a bone-ingrowth surface of the component body manufactured from a Co-based coating alloy comprising Co, Cr, Mo, Si, C and B. The coating is a network of fused particles of the Co-based coating alloy with spherical particles, irregular aspherical particles, and between about 35 and about 70 volume % porosity. A method of manufacturing the foregoing surgical implant component.
Abstract:
Cobalt-based alloy compositions are described herein having properties compatible with thermal spray and sintering techniques. Such alloy compositions can provide claddings to a variety of metallic substrates having complex geometries, wherein the claddings exhibit desirable density, hardness, wear resistance and corrosion resistance. Briefly, an alloy composition described herein comprises 15-25 wt. % chromium, 15-20 wt. % molybdenum, 0-15 wt. % tungsten, 10-20 wt. % nickel, 2.5-3.5 wt. % boron, 2.5-4.5 wt. % silicon, 1-2 wt. % carbon and the balance cobalt, wherein a ratio of boron to silicon (B/Si) in the alloy composition ranges from 0.5 to 1.0.
Abstract:
A surgical implant component comprising an implant component body manufactured from a Co-based substrate alloy comprising Co, Cr, Mo, Si, and C, and a coating on a bone-ingrowth surface of the component body manufactured from a Co-based coating alloy comprising Co, Cr, Mo, Si, C and B. The coating is a network of fused particles of the Co-based coating alloy with spherical particles, irregular aspherical particles, and between about 35 and about 70 volume % porosity. A method of manufacturing the foregoing surgical implant component.