Abstract:
In one aspect, coatings are described herein employing composite architectures providing high aluminum content and high hardness for various cutting applications. For example, a coated cutting tool comprises a substrate and a coating comprising a refractory layer deposited by physical vapor deposition adhered to the substrate, the refractory layer comprising a plurality of sublayer groups, a sublayer group comprising a titanium aluminum nitride sublayer and an adjacent composite sublayer comprising alternating nanolayers of titanium silicon nitride and titanium aluminum nitride.
Abstract:
In one aspect, articles are described herein comprising refractory coatings employing an inter-anchored multilayer architecture. Articles having refractory coatings described herein, in some embodiments, are suitable for high wear and/or abrasion applications such as metal cutting operations. A coated article described herein comprises a substrate and a coating deposited by CVD adhered to the substrate, the coating including a refractory layer comprising a plurality of sublayer groups, a sublayer group comprising a Group IVB metal nitride sublayer and an adjacent layer alumina sublayer, the Group IVB metal nitride sublayer comprising a plurality of nodules interfacing with the alumina sublayer.
Abstract:
A coated cutting insert for a chipforming material removal operation wherein the coated insert has a substrate and a coating scheme on the substrate. The coating scheme includes a CVD transition coating layer. The coating scheme further includes a CVD multi-layered coating scheme having a plurality of coating sets. Each one of the coating sets has an aluminum oxide coating layer and a nitrogen-containing coating layer.
Abstract:
A coated cutting insert and a method for making the same. The coated cutting insert has a substrate with a substrate surface. There is a backing coating scheme on the substrate surface, and a TiAl2O3 coating layer wherein the TiAl2O3 coating layer is deposited using chemical vapor deposition from a gaseous composition including AiCl3, H2, TiCl4, CO2 and HCl.
Abstract translation:涂层切削刀片及其制造方法。 涂覆的切削刀片具有带有基底表面的基底。 在衬底表面上有背衬涂层方案,以及TiAl 2 O 3涂层,其中使用化学气相沉积从包括AlCl 3,H 2,TiCl 4,CO 2和HCl的气体组合物沉积TiAl 2 O 3涂层。
Abstract:
In one aspect, cutting tools are described having coatings adhered thereto which, in some embodiments, can demonstrate desirable wear resistance and increased cutting lifetimes. A coated cutting tool described herein comprises a substrate and a coating adhered to the substrate, the coating having a multilayer structure including a plurality of structural units each comprising a bonding layer and an adjacent alumina layer, the alumina layer having a thickness of less than 0.5 μm and the bonding layer having a thickness less than 1 μm, the bonding layer comprising TiCN and TiAlOC.
Abstract:
A coated cutting insert for a chipforming material removal operation wherein the coated insert has a substrate and a coating scheme on the substrate. The coating scheme includes a CVD transition coating layer. The coating scheme further includes a CVD multi-layered coating scheme having a plurality of coating sets. Each one of the coating sets has an aluminum oxide coating layer and a nitrogen-containing coating layer.
Abstract:
In one aspect, cutting tools are described having coatings adhered thereto which, in some embodiments, can demonstrate desirable wear resistance and increased cutting lifetimes. A coated cutting tool described herein comprises a substrate and a coating adhered to the substrate, the coating having a multilayer structure including a plurality of structural units each comprising a bonding layer and an adjacent alumina layer, the alumina layer having a thickness of less than 0.5 μm and the bonding layer having a thickness less than 1 μm, the bonding layer comprising TiCN and TiAlOC.
Abstract:
In one aspect, cutting tools are described herein comprising wear resistant coatings employing one or more refractory layers of polycrystalline α-Al2O3. Briefly, a coated cutting tool described herein comprises a substrate, and a coating adhered to the substrate, the coating comprising a layer of polycrystalline α-Al2O3 deposited by chemical vapor deposition (CVD), wherein at least 5% of all grain boundaries in the polycrystalline α-Al2O3 layer have a misorientation angle less than 15 degrees as determined using a field-emission scanning electron microscope (FESEM) and an electron backscatter diffraction (EBSD) detector.
Abstract:
A coating includes a layer having an alumina matrix and at least one of zirconia grains and hafnia grains in the alumina matrix. An average grain size of the at least one of the zirconia grains and hafnia grains is 100 nm or less. A coated cutting tool includes a substrate and the coating bonded to the substrate. The substrate has a rake face, a flank face, and a cutting edge formed at the intersection of the rake face and the flank face.
Abstract:
In one aspect, coatings are described herein employing composite architectures providing high aluminum content and high hardness for various cutting applications. For example, a coated cutting tool comprises a substrate and a coating comprising a refractory layer deposited by physical vapor deposition adhered to the substrate, the refractory layer comprising a plurality of sublayer groups, a sublayer group comprising a titanium aluminum nitride sublayer and an adjacent composite sublayer comprising alternating nanolayers of titanium silicon nitride and titanium aluminum nitride.