摘要:
A magnetic head is provided for further improving a correlation between the dynamic characteristics and static characteristics. A lower magnetic shield layer, a magneto-resistive layer, and an upper magnetic shield layer are laminated on a base in this order. A lower lead layer and an upper lead layer apply a sense current to the magneto-resistive layer in a direction substantially perpendicular to the film plane thereof through the magnetic shield layers. The lower magnetic shield layer and upper magnetic shield layer have their shapes and sizes which substantially exactly overlap each other, when viewed in a laminating direction. The lower lead layer is electrically connected to the lower magnetic shield layer. At least a portion of the lower lead layer closer to the lower magnetic shield layer is made of a non-magnetic conductive material. The upper lead layer is electrically connected to the upper magnetic shield layer. At least a portion of the upper lead layer closer to the upper magnetic shield layer is made of a non-magnetic conductive material.
摘要:
A magnetic head is provided for further improving a correlation between the dynamic characteristics and static characteristics. A lower magnetic shield layer, a magneto-resistive layer, and an upper magnetic shield layer are laminated on a base in this order. A lower lead layer and an upper lead layer apply a sense current to the magneto-resistive layer in a direction substantially perpendicular to the film plane thereof through the magnetic shield layers. The lower magnetic shield layer and upper magnetic shield layer have their shapes and sizes which substantially exactly overlap each other, when viewed in a laminating direction. The lower lead layer is electrically connected to the lower magnetic shield layer. At least a portion of the lower lead layer closer to the lower magnetic shield layer is made of a non-magnetic conductive material. The upper lead layer is electrically connected to the upper magnetic shield layer. At least a portion of the upper lead layer closer to the upper magnetic shield layer is made of a non-magnetic conductive material.
摘要:
A parasitic capacity C4 generated between a slider substrate and the first shield layer with the first insulating layer as a capacity layer is made substantially equal to a parasitic capacity C2 occurring between a lower magnetic layer and the second shield layer with the third insulating layer as a capacity layer. Preferably, a connection is made between the lower magnetic layer and the slider substrate by a resistance of preferably 100 (Ω) or lower. Thus, it is possible to provide a thin-film magnetic head that can hold back deterioration in a reproducing device and the occurrence of errors due to crosstalk between a recording device and the reproducing device and extraneous noises.
摘要:
A thin film magnetic head has an air bearing surface and comprises magnetic shield layers, an MR element, bias-applying layers, and a hard magnetic layer. Each of the magnetic shield layers has an end face forming the air bearing surface, and an end face located opposite to the end face. The MR element is located between the magnetic shield layers and on the end face side. The bias-applying layers are located between the magnetic shield layers and are arranged to apply a bias magnetic field to the MR element. The hard magnetic layer is located between the magnetic shield layers and on the end face side. A height of the hard magnetic layer is larger than ⅓ and smaller than ½ of a height of each magnetic shield layer.
摘要:
A thin film magnetic head has an air bearing surface and comprises magnetic shield layers, an MR element, bias-applying layers, and a hard magnetic layer. Each of the magnetic shield layers has an end face forming the air bearing surface, and an end face located opposite to the end face. The MR element is located between the magnetic shield layers and on the end face side. The bias-applying layers are located between the magnetic shield layers and are arranged to apply a bias magnetic field to the MR element. The hard magnetic layer is located between the magnetic shield layers and on the end face side. A height of the hard magnetic layer is larger than ⅓ and smaller than ½ of a height of each magnetic shield layer.
摘要:
A parasitic capacity C4 generated between a slider substrate and the first shield layer with the first insulating layer as a capacity layer is made substantially equal to a parasitic capacity C2 occurring between a lower magnetic layer and the second shield layer with the third insulating layer as a capacity layer. Preferably, a connection is made between the lower magnetic layer and the slider substrate by a resistance of preferably 100 (Ω) or lower. Thus, it is possible to provide a thin-film magnetic head that can hold back deterioration in a reproducing device and the occurrence of errors due to crosstalk between a recording device and the reproducing device and extraneous noises.
摘要:
A tunneling magneto-resistive element includes: a tunneling magneto-resistive film including an antiferromagnetic layer, a pinned layer, a barrier layer and a free layer; and a lower magnetic shielding film disposed below the tunneling magneto-resistive film with respect to a lamination direction. The barrier layer is constituted of magnesium oxide. The lower magnetic shielding film has a multi-layer structure including a crystalline layer and an amorphous layer disposed above the crystalline layer with respect to the lamination direction. The crystalline layer contains at least one crystal grain having a grain size of 500 nm or more.
摘要:
A tunneling magneto-resistive element includes: a tunneling magneto-resistive film including an antiferromagnetic layer, a pinned layer, a barrier layer and a free layer; and a lower magnetic shielding film disposed below the tunneling magneto-resistive film with respect to a lamination direction. The barrier layer is constituted of magnesium oxide. The lower magnetic shielding film has a multi-layer structure including a crystalline layer and an amorphous layer disposed above the crystalline layer with respect to the lamination direction. The crystalline layer contains at least one crystal grain having a grain size of 500 nm or more.
摘要:
The present invention relates to a manufacturing method of a thin-film magnetic head whereby re-deposition and an overlapped part in a region of a magnetoresistive effect multi-layered structure opposite to an air bearing surface can be removed and also a width of a free layer can be narrowed.
摘要:
In the thin-film magnetic head of the present invention, the length of each of a pinned layer and an antiferromagnetic layer in their contact area in the depth direction from a surface facing a medium is longer than the length of a free layer in the same direction. When the length of the pinned layer in the depth direction is set longer as such, the direction of magnetization of the pinned layer can be restrained from being tilted by disturbances. Also, the pinned layer and the antiferromagnetic layer have the same length in their contact area in the MR height direction, so that the pinned layer is in contact with the antiferromagnetic layer throughout its length in the MR height direction, thus raising the exchange coupling force, whereby the inclination in the direction of magnetization can be suppressed more effectively.