摘要:
The intrapericardial lead includes a lead body having a proximal portion and a flexible, pre-curved distal end portion. The distal end portion carries at least one electrode assembly containing an electrode adapted to engage pericardial tissue. The distal end portion further carries a pre-curved flexible wire member having ends attached to spaced apart points along the distal end portion of the lead body, the flexible wire member having a normally expanded state wherein an intermediate portion of the wire member is spaced apart from the distal end portion, and a generally straightened state wherein the wire member and the distal end portion are disposed in a more parallel, adjacent relationship so as to present a small frontal area to facilitate delivery into the pericardial space. The wire member re-expands to its normal state after delivery into the percaridal space to anchor the distal end portion of the lead body relative to the pericardial tissue.
摘要:
The intrapericardial lead includes a lead body having a proximal portion and a flexible, pre-curved distal end portion. The distal end portion carries at least one electrode assembly containing an electrode adapted to engage pericardial tissue. The distal end portion further carries a pre-curved flexible wire member having ends attached to spaced apart points along the distal end portion of the lead body, the flexible wire member having a normally expanded state wherein an intermediate portion of the wire member is spaced apart from the distal end portion, and a generally straightened state wherein the wire member and the distal end portion are disposed in a more parallel, adjacent relationship so as to present a small frontal area to facilitate delivery into the pericardial space. The wire member re-expands to its normal state after delivery into the percaridal space to anchor the distal end portion of the lead body relative to the pericardial tissue.
摘要:
The intrapericardial lead includes a lead body having a proximal portion and a flexible, pre-curved distal end portion. The distal end portion carries at least one electrode assembly containing an electrode adapted to engage pericardial tissue. The distal end portion further carries a pre-curved flexible wire member having ends attached to spaced apart points along the distal end portion of the lead body, the flexible wire member having a normally expanded state wherein an intermediate portion of the wire member is spaced apart from the distal end portion, and a generally straightened state wherein the wire member and the distal end portion are disposed in a more parallel, adjacent relationship so as to present a small frontal area to facilitate delivery into the pericardial space. The wire member re-expands to its normal state after delivery into the pericardial space to anchor the distal end portion of the lead body relative to the pericardial tissue.
摘要:
The intrapericardial lead includes a lead body having a proximal portion and a flexible, pre-curved distal end portion. The distal end portion carries at least one electrode assembly containing an electrode adapted to engage pericardial tissue. The distal end portion further carries a pre-curved flexible wire member having ends attached to spaced apart points along the distal end portion of the lead body, the flexible wire member having a normally expanded state wherein an intermediate portion of the wire member is spaced apart from the distal end portion, and a generally straightened state wherein the wire member and the distal end portion are disposed in a more parallel, adjacent relationship so as to present a small frontal area to facilitate delivery into the pericardial space. The wire member re-expands to its normal state after delivery into the pericardial space to anchor the distal end portion of the lead body relative to the pericardial tissue.
摘要:
An introducer sheath is disclosed herein. The sheath includes a tubular body. The tubular body has a proximal zone, an intermediate zone and a distal zone. The proximal zone is generally straight. The intermediate zone extends from a distal end of the proximal zone and curves in a first direction. The distal zone extends from a distal end of the intermediate zone and curves in a second direction different from the first direction.
摘要:
Embodiments include electrical leads and methods of using electrical leads that may be used for delivering both cardioversion/defibrillation signals and pacing signals and sensing to target tissue. Some of these embodiments may also be used to sense and transmit electrical signals from target tissue. Some electrical lead embodiments are configured to be delivered into a patient's intrapericardial space by non-invasive methods.
摘要:
A system and method are provided for monitoring ischemic development. The system and method identify a non-physiologic event and obtain cardiac signals along multiple sensing vectors, wherein at least a portion of the sensing vectors extend to or from electrodes located proximate to the left ventricle. The system and method monitor a segment of interest in the cardiac signals obtained along the multiple sensing vectors to identify deviations in the segment of interest from a baseline. The system and method record at least one of timing or segment shift information associated with the deviations in the segments of interest; and identify at least one of size, direction of development or rate of progression of an ischemia region based on the at least one of timing or segment shift information.
摘要:
A method includes selecting an electrode located in a patient; acquiring position information with respect to time for the electrode where the acquiring uses the electrode for repeatedly measuring electrical potentials in an electrical localization field established in the patient; calculating a stability metric for the electrode based on the acquired position information with respect to time; and deciding if the selected electrode, as located in the patient, has a stable location for sensing biological electrical activity, for delivering electrical energy or for sensing biological electrical activity and delivering electrical energy. Position information may be acquired during one or both of intrinsic or paced activation of a heart and respective stability indexes calculated for each activation type.
摘要:
An exemplary method generates a map of a pacing parameter, a sensing parameter or one or more other parameters based in part on location information acquired using a localization system configured to locate electrodes in vivo (i.e., within a patient's body). Various examples map capture thresholds, qualification criteria for algorithms, undesirable conditions and sensing capabilities. Various other methods, devices, systems, etc., are also disclosed.
摘要:
A system and method are provided for monitoring ischemic development. The system and method identify a non-physiologic event and obtain cardiac signals along multiple sensing vectors, wherein at least a portion of the sensing vectors extend to or from electrodes located proximate to the left ventricle. The system and method monitor a segment of interest in the cardiac signals obtained along the multiple sensing vectors to identify deviations in the segment of interest from a baseline. The system and method record at least one of timing or segment shift information associated with the deviations in the segments of interest; and identify at least one of size, direction of development or rate of progression of an ischemia region based on the at least one of timing or segment shift information.