摘要:
An electrochromic multi-layer stack is provided. The multi-layer stack includes an electrochromic multi-layer stack having a first substrate, a first electrically conductive layer, a first electrode layer, an ion conductor layer, a second substrate, a second electrically conductive layer, and a second electrode layer. The multi-layer stack includes a redox element, wherein the redox element is electrically isolated from the first and second electrically conductive layers and the first and second electrode layer and is laterally adjacent to either the first electrically conductive layer and the first electrode, or the second electrically conductive layer and the second electrode layer. A method for controlling an electrochromic device is also provided.
摘要:
An electrochromic multi-layer stack is provided. The multi-layer stack includes an electrochromic multi-layer stack having a first substrate, a first electrically conductive layer, a first electrode layer, an ion conductor layer, a second substrate, a second electrically conductive layer, and a second electrode layer. The multi-layer stack includes a redox element, wherein the redox element is electrically isolated from the first and second electrically conductive layers and the first and second electrode layer and is laterally adjacent to either the first electrically conductive layer and the first electrode, or the second electrically conductive layer and the second electrode layer. A method for controlling an electrochromic device is also provided.
摘要:
An electrochromic multi-layer stack is provided. The multi-layer stack includes an electrochromic multi-layer stack having a first substrate, a first electrically conductive layer, a first electrode layer, an ion conductor layer, a second substrate, a second electrically conductive layer, and a second electrode layer. The multi-layer stack includes a redox element, wherein the redox element is electrically isolated from the first and second electrically conductive layers and the first and second electrode layer and is laterally adjacent to either the first electrically conductive layer and the first electrode, or the second electrically conductive layer and the second electrode layer. A method for controlling an electrochromic device is also provided.
摘要:
An electrochromic multi-layer stack is provided. The multi-layer stack includes an electrochromic multi-layer stack having a first substrate, a first electrically conductive layer, a first electrode layer, an ion conductor layer, a second substrate, a second electrically conductive layer, and a second electrode layer. The multi-layer stack includes a redox element, wherein the redox element is electrically isolated from the first and second electrically conductive layers and the first and second electrode layer and is laterally adjacent to either the first electrically conductive layer and the first electrode, or the second electrically conductive layer and the second electrode layer. A method for controlling an electrochromic device is also provided.
摘要:
Multi-layer electrochromic structures, and processes for assembling such structures, incorporating a cross-linked ion conducting polymer layer that maintains high adhesive and cohesive strength in combination with high ionic conductivity for an extended period of time, the ion conducting polymer layer characterized by electrochemical stability at voltages between about 1.3 V and about 4.4 V relative to lithium, lithium ion conductivity of at least about 10−5 s/cm, and lap shear strength of at least 100 kPa, as measured at 1.27 mm/min in accordance with ASTM International standard D1002 or D3163.
摘要:
An electrochromic multi-layer stack is provided. The multi-layer stack includes an electrochromic multi-layer stack having a first substrate, a first electrically conductive layer, a first electrode layer, an ion conductor layer, a second substrate, a second electrically conductive layer, and a second electrode layer. The multi-layer stack includes a redox element, wherein the redox element is electrically isolated from the first and second electrically conductive layers and the first and second electrode layer and is laterally adjacent to either the first electrically conductive layer and the first electrode, or the second electrically conductive layer and the second electrode layer. A method for controlling an electrochromic device is also provided.
摘要:
Multi-layer electrochromic structures, and processes for assembling such structures, incorporating a cross-linked ion conducting polymer layer that maintains high adhesive and cohesive strength in combination with high ionic conductivity for an extended period of time, the ion conducting polymer layer characterized by electrochemical stability at voltages between about 1.3 V and about 4.4 V relative to lithium, lithium ion conductivity of at least about 10−5 s/cm, and lap shear strength of at least 100 kPa, as measured at 1.27 mm/min in accordance with ASTM International standard D1002 or D3163.
摘要:
Multi-layer electrochromic structures, and processes for assembling such structures, incorporating a cross-linked ion conducting polymer layer that maintains high adhesive and cohesive strength in combination with high ionic conductivity for an extended period of time, the ion conducting polymer layer characterized by electrochemical stability at voltages between about 1.3 V and about 4.4 V relative to lithium, lithium ion conductivity of at least about 10−5 s/cm, and lap shear strength of at least 100 kPa, as measured at 1.27 mm/min in accordance with ASTM International standard D1002 or D3163.
摘要:
An electrochromic multi-layer stack is provided. The multi-layer stack includes an electrochromic multi-layer stack having a first substrate, a first electrically conductive layer, a first electrode layer, an ion conductor layer, a second substrate, a second electrically conductive layer, and a second electrode layer. The multi-layer stack includes a redox element, wherein the redox element is electrically isolated from the first and second electrically conductive layers and the first and second electrode layer and is laterally adjacent to either the first electrically conductive layer and the first electrode, or the second electrically conductive layer and the second electrode layer. A method for controlling an electrochromic device is also provided.