Abstract:
An electrode with a conductive substrate and an electrocatalyst comprising zinc oxide and copper oxide supported on a carbon nanomaterial, a method of fabricating the electrode, an electrochemical cell that utilizes the electrode as a working electrode, and a process for producing propanol from CO2 with the electrochemical cell. Various combinations of embodiments of the electrode and the method of fabricating thereof, the electrochemical cell, and the process for producing propanol from CO2 is provided.
Abstract:
A method for dry reformation of methane (DRM) includes introducing a H2-containing feed gas stream into a reactor, including a nickel-containing fibrous silica zinc oxide (Ni/FSZ) catalyst, passing the H2-containing feed gas stream through the reactor to contact the H2-containing feed gas stream with particles of the Ni/FSZ catalyst at a temperature of from 500 to 900 degrees Celsius (° C.) to form a reduced catalyst; terminating the introduction of the H2-containing feed gas stream and introducing and passing a mixed feed gas stream including CH4 and CO2 through the reactor to contact the mixed feed gas stream with the reduced catalyst at a temperature of from 500 to 1000° C. thereby converting at least a portion of the CH4 and CO2 to H2 and CO; and regenerating the Ni/FSZ catalyst particles to form a regenerated catalyst and producing a residue gas stream leaving the reactor.
Abstract:
A functionalized silica sorbent is described. The sorbent comprises mesoporous silica nanoparticles having a surface functionalized with a conjugated system comprising an azole and a phenyl. The surface may be functionalized by a Cu-catalyzed click reaction. The nanoparticles have an average particle size of 10-80 nm, and may be used to adsorb phenolic contaminants from aqueous solutions.
Abstract:
Yttria containing hybrid organic-inorganic sol-gels may be used in coatings for capillary microextraction, optionally hyphenated to online HPLC analysis. The sol-gel reaction mixture can use an yttrium trialkoxyalkoxide, such as yttrium trimethoxyethoxide, and a [bis(hydroxyalkyl)-amino-alkyl]-terminated polydialkyl/arylsiloxane, such as [bis(hydroxyethyl)-amine] (BHEA)-terminated polydimethylsiloxane, that can undergo hydrolysis and polycondensation, to form coating materials. Capillaries coated with such sol-gels can have improved extraction efficiency compared, e.g., to pure yttria-based coatings. The CME-HPLC can analyze water samples containing analytes of varied polarity, with excellent extraction of amides, phenols, alcohols, ketones, aldehydes, and polyaromatic hydrocarbons and detection limits ranging from 0.18 to 7.35 ng/mL (S/N=3). Such capillaries can exhibit solvent stability at pH 0 to 14, RSD % between 0.6 to 6.8% (n=3), at a preparative reproducibility RSD between 4.1 and 9.9%.
Abstract:
A method for determining the concentration of a phenoxy herbicide in an aqueous sample, by simultaneously phase-transfer catalyst extracting and alkylating an aqueous sample comprising a phenoxy herbicide to form a sample composition, and measuring an amount of the alkylated phenoxy herbicide in the sample composition. The method includes controlling factors such as pH of the aqueous matrix, temperature, extraction duration, type and amount of derivation reagents, and type and amount of phase transfer catalyst.
Abstract:
A method for determining the concentration of a phenoxy herbicide in an aqueous sample, by simultaneously phase-transfer catalyst extracting and alkylating an aqueous sample comprising a phenoxy herbicide to form a sample composition, and measuring an amount of the alkylated phenoxy herbicide in the sample composition. The method includes controlling factors such as pH of the aqueous matrix, temperature, extraction duration, type and amount of derivation reagents, and type and amount of phase transfer catalyst.
Abstract:
A functionalized silica sorbent is described. The sorbent comprises mesoporous silica nanoparticles having a surface functionalized with a conjugated system comprising an azole and a phenyl. The surface may be functionalized by a Cu-catalyzed click reaction. The nanoparticles have an average particle size of 10-80 nm, and may be used to adsorb phenolic contaminants from aqueous solutions.
Abstract:
A functionalized silica sorbent is described. The sorbent comprises mesoporous silica nanoparticles having a surface functionalized with a conjugated system comprising an azole and a phenyl. The surface may be functionalized by a Cu-catalyzed click reaction. The nanoparticles have an average particle size of 10-80 nm, and may be used to adsorb phenolic contaminants from aqueous solutions.
Abstract:
A single-pot method of producing a hydrodesulfurization catalyst by hydrothermally treating a hydrothermal precursor that includes a silica source, a structural directing surfactant, an aqueous acid solution, and metal precursors that contain active catalyst materials is provided. The hydrodesulfurization catalyst includes a catalyst support having SBA-15 and preferably titanium, wherein the active catalyst materials are homogenously deposited on the catalyst support. Various embodiments of said method and the hydrodesulfurization catalyst are also provided.