摘要:
The present invention provides a thin film magnetic head having a recording track width of 1 &mgr;m or less, and a method for manufacturing the thin film magnetic head having a recording track width of 1 &mgr;m or less. In the thin film magnetic head, an upper core layer and a lower core layer extend from a back region toward a magnetic pole tip region, and are exposed at a medium opposing surface, and a gap layer is provided, in the magnetic pole tip region, between the upper core layer and the lower core layer. An insulation layer is deposited on the lower core layer, and a groove that extends from the medium opposing surface toward the back region is provided in the magnetic pole tip region of the insulation layer. A lower magnetic pole layer, the gap layer, and an upper magnetic pole layer are deposited in the groove. The lower magnetic pole layer is joined to the lower core layer, while the upper magnetic pole layer is joined to the upper core layer.
摘要:
A thin-film magnetic head for perpendicular magnetic recording comprising an auxiliary magnetic pole layer; a main magnetic pole layer; a conductive coil layer in a spiral shape which is disposed between the main magnetic pole layer and the auxiliary magnetic pole layer and which cross the magnetic circuit; and insulating layers electrically insulating the auxiliary magnetic pole layer and the main magnetic pole layer from the conductive coil layer. The insulating layers have flat surfaces formed at the sides further from the auxiliary magnetic pole layer, the front end portion of the main magnetic pole layer is provided on one of the flat surfaces, and the conductive coil layer is disposed under the main magnetic pole layer so that a part of the conductive coil layer opposes the front end portion of the main magnetic pole layer.
摘要:
A longitudinal bias layer and an electrode layer are formed on a non-magnetic material layer. The longitudinal bias layer and the electrode layer are partially removed by an etching technique so that a narrow gap defining the track width Tw is formed in the longitudinal bias layer and the electrode layer. Furthermore, a three-layer film consisting of, from bottom to top, a magnetoresistance effect layer, a non-magnetic layer, and a transverse bias layer, or otherwise a spin valve film consisting of a free magnetic layer, a non-magnetic layer, a fixed magnetic layer and a bias layer is formed on the above structure. The three-layer film or the spin valve film is then partially removed by an etching technique so that the three-layer film or the spin valve film remains only in the above-described narrow gap formed in the longitudinal bias layer and the electrode layer. The shape of the side walls of the three-layer film or the spin valve film is precisely determined by the side walls of the longitudinal bias layer and the electrode layer. The resultant three-layer film or the spin valve film exhibits excellent magnetic detection characteristics. Furthermore, the longitudinal bias layer has good magnetic coupling with the magnetoresistance effect layer.
摘要:
A thin film magnetic head has coil layer formed in a space surrounded by a lower core layer, a protruding layer and a back gap layer. The top of these layers are planarized to a continuous flat surface. A lower magnetic pole layer, a gap layer, an upper magnetic pole layer and an upper core layer are formed on the flat surface and are precisely formed in a predetermined shape. The track width Tw can also be set to a predetermined dimension by the width of the upper magnetic pole layer at a surface facing the recording medium. Also, the magnetic path can be shortened to improve magnetic properties.
摘要:
A magnetoresistive sensor is fabricated as follows. First of all, first antiferromagnetic layers are created on the upper surfaces on both sides of a lower-gap layer, sandwiching a track width on the upper surface of the lower-gap layer. Then, a free magnetic layer, a nonmagnetic electrically conductive layer, a pinned magnetic layer and a second antiferromagnetic layer are stacked on the first antiferromagnetic layers and a portion on the track width one after another in the order the layers are enumerated. Since the free magnetic layer is created after the first antiferromagnetic layer, the free magnetic layer and the first antiferromagnetic layer are adhered to each other with a high degree of reliability. When the direction of magnetization in the free magnetic layer is changed by an external magnetic field, the electrical resistance of the magnetoresistive sensor also changes. The change in electrical resistance is, in turn, used for detecting the external magnetic field. Since the first antiferromagnetic layers put the free magnetic layer in a single-domain state in the X direction, the amount of Barkhausen noise can be reduced.
摘要:
A magnetoresistive sensor fabricated by creating first antiferromagnetic layers on the upper surfaces of a lower-gap layer, the antiferromagnetic layer having first and second exposed portions separated by a track width formed by the upper surface of the lower-gap layer. Then, a free magnetic layer, a nonmagnetic electrically conductive layer, a pinned magnetic layer and a second antiferromagnetic layer are stacked on the first antiferromagnetic layers and a portion on the track width one after another. Since the free magnetic layer is created after the first antiferromagnetic layer, the free magnetic layer and the first antiferromagnetic layer are adhered to each other with a high degree of reliability. When the direction of magnetization in the free magnetic layer is changed by an external magnetic field, the electrical resistance of the magnetoresistive sensor also changes. The change in electrical resistance is, in turn, used for detecting the external magnetic field. Since the first antiferromagnetic layers put the free magnetic layer in a single-domain state in the X direction, the amount of Barkhausen noise can be reduced.
摘要:
A thin film magnetic head has coil layer formed in a space surrounded by a lower core layer, a protruding layer and a back gap layer. The top of these layers are planarized to a continuous flat surface. A lower magnetic pole layer, a gap layer, an upper magnetic pole layer and an upper core layer are formed on the flat surface and are precisely formed in a predetermined shape. The track width Tw can also be set to a predetermined dimension by the width of the upper magnetic pole layer at a surface facing the recording medium. Also, the magnetic path can be shortened to improve magnetic properties.
摘要:
A magnetoresistive sensor fabricated by creating first antiferromagnetic layers on the upper surfaces of a lower-gap layer the antiferromagnetic layer having first and second exposed portions separated by a track width formed by the upper surface of the lower-gap layer. Then, a free magnetic layer, a nonmagnetic electrically conductive layer, a pinned magnetic layer and a second antiferromagnetic layer are stacked on the first antiferromagnetic layers and a portion on the track width one after another. Since the free magnetic layer is created after the first antiferromagnetic layer, the free magnetic layer and the first antiferromagnetic layer are adhered to each other with a high degree of reliability. When the direction of magnetization in the free magnetic layer is changed by an external magnetic field, the electrical resistance of the magnetoresistive sensor also changes. The change in electrical resistance is, in turn, used for detecting the external magnetic field. Since the first antiferromagnetic layers put the free magnetic layer in a single-domain state in the X direction, the amount of Barkhausen noise can be reduced.
摘要:
A longitudinal bias layer and an electrode layer are formed on a non-magnetic material layer. The longitudinal bias layer and the electrode layer are partially removed by an etching technique so that a narrow gap defining the track width Tw is formed in the longitudinal bias layer and the electrode layer. Furthermore, a three-layer film consisting of, from bottom to top, a magnetoresistance effect layer, a non-magnetic layer, and a transverse bias layer, or otherwise a spin valve film consisting of a free magnetic layer, a non-magnetic layer, a fixed magnetic layer and a bias layer is formed on the above structure. The three-layer film or the spin valve film is then partially removed by an etching technique so that the three-layer film or the spin valve film remains only in the above-described narrow gap formed in the longitudinal bias layer and the electrode layer. The shape of the side walls of the three-layer film or the spin valve film is precisely determined by the side walls of the longitudinal bias layer and the electrode layer. The resultant three-layer film or the spin valve film exhibits excellent magnetic detection characteristics. Furthermore, the longitudinal bias layer has good magnetic coupling with the magnetoresistance effect layer.
摘要:
A thin film magnetic head has coil layer formed in a space surrounded by a lower core layer, a protruding layer and a back gap layer. The top of these layers are planarized to a continuous flat surface. A lower magnetic pole layer, a gap layer, an upper magnetic pole layer and an upper core layer are formed on the flat surface and are precisely formed in a predetermined shape. The track width Tw can also be set to a predetermined dimension by the width of the upper magnetic pole layer at a surface facing the recording medium. Also, the magnetic path can be shortened to improve magnetic properties.