摘要:
A flowmeter for achieving a fluid flow rate value by using calibration curves on the basis of the output of a detection circuit using a bridge circuit (73) containing as constituent resistors respective temperature sensing elements of a flow rate detector containing a heating element (33) and a fluid temperature detector in an indirectly heated type flow rate sensor unit. The bridge circuit (73) varies the circuit characteristic value in plural steps by a multiplexer (731) for selectively connecting the output terminal and any one of the connection terminals between the in-series connected resistors. Plural calibration curves are provided in association with the steps of the circuit characteristic value, and any one of the plural calibration curves is selected in accordance with the step of the circuit characteristic value selected by the multiplexer (731). The flow rate range to be measured is set every calibration curve, and the multiplexer (731) is controlled in accordance with the fluid flow rate value thus achieved, and the calibration curve corresponding to the flow rate range to which the flow rate value belongs. According to this flowmeter, the flow rate can be measured with excellent precision over a board flow rate range.
摘要:
A flowmeter for achieving a fluid flow rate value by using calibration curves on the basis of the output of a detection circuit using a bridge circuit (73) containing as constituent resistors respective temperature sensing elements of a flow rate detector containing a heating element (33) and a fluid temperature detector in an indirectly heated type flow rate sensor unit. The bridge circuit (73) varies the circuit characteristic value in plural steps by a multiplexer (731) for selectively connecting the output terminal and any one of the connection terminals between the in-series connected resistors. Plural calibration curves are provided in association with the steps of the circuit characteristic value, and any one of the plural calibration curves is selected in accordance with the step of the circuit characteristic value selected by the multiplexer (731). The flow rate range to be measured is set every calibration curve, and the multiplexer (731) is controlled in accordance with the fluid flow rate value thus achieved, and the calibration curve corresponding to the flow rate range to which the flow rate value belongs. According to this flowmeter, the flow rate can be measured with excellent precision over a board flow rate range.
摘要:
Measurements are obtained by a computing unit based on an output Vh from an indirectly-heated constant-temperature controlling flow rate measuring section (16) and an output Vout from a two-constant-point temperature difference detecting flow rate measuring sections (18a, 18b). In the flow rate measuring section (16), a heating element (163) is feedback-controlled based on a detected temperature by a heat sensing element (162) to obtain an output Vh based on the feedback-controlled condition. An output Vout is obtained from flow rate measuring sections (18a, 18b) based on the detected temperature difference between a heat sensing element (182) disposed on the liquid-flow-direction upstream side of the flow-rate measuring section (16) and a temperature sensing element disposed on the downstream side. A computing unit outputs as a measurement a flow rate obtained based on the output Vh in a flow rate region where a flow rate is larger than a predetermined boundary flow rate, and outputs as a measurement a flow rate obtained based on the output Vout in a flow rate region where it is less than a boundary flow rate. Accordingly, a flow rate is measured with good precision and sensitivity over a wide flow rate range from a trace-amount flow rate region to a comparatively large flow rate region.
摘要:
A flow rate/liquid type detecting method for detecting the flow rate of a fluid and, at the same time, detecting any one of or both the type of the fluid and the concentration of the fluid, characterized in that: by using a flow rate/liquid type detecting apparatus comprising a main passage through which a fluid to be detected flows, an auxiliary passage branched from the main passage, and a flow rate/liquid type detecting sensor device provided in the auxiliary passage, is provided, and in conducting any one of or both the detection of the type of the fluid to be detected and the detection of the concentration of the fluid to be detected, an auxiliary passage opening/closing valve is closed, and the fluid to be detected is allowed to temporarily stay within the flow rate/liquid type detecting sensor device to conduct any one of or both the detection of the liquid type and the detection of the concentration, and in detecting the flow rate of the fluid to be detected, the auxiliary passage opening/closing valve is opened to allow the fluid to be detected to flow into the flow rate/liquid type detecting sensor device to detect the flow rate.
摘要:
Measurements are obtained by a computing unit based on an output Vh from an indirectly-heated constant-temperature controlling flow rate measuring section (16) and an output Vout from a two-constant-point temperature difference detecting flow rate measuring sections (18a, 18b). In the flow rate measuring section (16), a heating element (163) is feedback-controlled based on a detected temperature by a heat sensing element (162) to obtain an output Vh based on the feedback-controlled condition. An output Vout is obtained from flow rate measuring sections (18a, 18b) based on the detected temperature difference between a heat sensing element (182) disposed on the liquid-flow-direction upstream side of the flow rate measuring section (16) and a temperature sensing element disposed on the downstream side. A computing unit outputs as a measurement a flow rate obtained based on the output Vh in a flow rate region where a flow rate is larger than a predetermined boundary flow rate, and outputs as a measurement a flow rate obtained based on the output Vout in a flow rate region where it is less than a boundary flow rate. Accordingly, a flow rate is measured with good precision and sensitivity over a wide flow rate range from a trace-amount flow rate region to a comparatively large flow rate region.
摘要:
Measurements are obtained by a computing unit based on an output Vh from an indirectly-heated constant-temperature controlling flow rate measuring section (16) and an output Vout from a two-constant-point temperature difference detecting flow rate measuring sections (18a, 18b). In the flow rate measuring section (16), a heating element (163) is feedback-controlled based on a detected temperature by a heat sensing element (162) to obtain an output Vh based on the feedback-controlled condition. An output Vout is obtained from flow rate measuring sections (18a, 18b) based on the detected temperature difference between a heat sensing element (182) disposed on the liquid-flow-direction upstream side of the flow rate measuring section (16) and a temperature sensing element disposed on the downstream side. A computing unit outputs as a measurement a flow rate obtained based on the output Vh in a flow rate region where a flow rate is larger than a predetermined boundary flow rate, and outputs as a measurement a flow rate obtained based on the output Vout in a flow rate region where it is less than a boundary flow rate. Accordingly, a flow rate is measured with good precision and sensitivity over a wide flow rate range from a trace-amount flow rate region to a comparatively large flow rate region.
摘要:
A strainer integrated flowmeter 210 is constituted by a strainer section 203 provided with a housing 202 having a flow passage 207 formed therein, a filter member 209 and a filter member insertion cylinder 210; and a flowmeter section 204 provided with a housing 202 having a flow passage 208 formed therein and a flow rate sensor 226. The housings 202 of both the strainer section 203 and flowmeter section 204 are integrated, and the flowmeter section 204 is disposed at downstream side. A vent hole 215 is formed in the housing 202 so as to be in communication with the flow passage 207.
摘要:
A flow rate/liquid type detecting method for detecting the flow rate of a fluid and, at the same time, detecting any one of or both the type of the fluid and the concentration of the fluid, characterized in that, by using a flow rate/liquid type detecting apparatus comprising: a main passage through which a fluid to be detected flows, an auxiliary passage branched from the main passage, and a flow rate/liquid type detecting sensor device provided in the auxiliary passage, is provided, and in conducting any one of or both the detection of the type of the fluid and the detection of the concentration of the fluid, the auxiliary passage opening/closing valve is closed, and the fluid is allowed to temporarily stay within the flow rate/liquid type detecting sensor device to conduct any one of or both the detection of the liquid type and the detection of the concentration, and in detecting the flow rate of the fluid detected, the auxiliary passage opening/closing valve is opened to allow the fluid to flow into the flow rate/liquid type detecting sensor device to detect the flow rate.
摘要:
A flow rate/liquid type detecting method for detecting the flow rate of a fluid and, at the same time, detecting any one of or both the type of the fluid and the concentration of the fluid, characterized in that, by using a flow rate/liquid type detecting apparatus comprising: a main passage through which a fluid to be detected flows, an auxiliary passage branched from the main passage, and a flow rate/liquid type detecting sensor device provided in the auxiliary passage, is provided, and in conducting any one of or both the detection of the type of the fluid and the detection of the concentration of the fluid, the auxiliary passage opening/closing valve is closed, and the fluid is allowed to temporarily stay within the flow rate/liquid type detecting sensor device to conduct any one of or both the detection of the liquid type and the detection of the concentration, and in detecting the flow rate of the fluid detected, the auxiliary passage opening/closing valve is opened to allow the fluid to flow into the flow rate/liquid type detecting sensor device to detect the flow rate.
摘要:
Measurements are obtained by a computing unit based on an output Vh from an indirectly-heated constant-temperature controlling flow rate measuring section (16) and an output Vout from a two-constant-point temperature difference detecting flow rate measuring sections (18a, 18b). In the flow rate measuring section (16), a heating element (163) is feedback-controlled based on a detected temperature by a heat sensing element (162) to obtain an output Vh based on the feedback-controlled condition. An output Vout is obtained from flow rate measuring sections (18a, 18b) based on the detected temperature difference between a heat sensing element (182) disposed on the liquid-flow-direction upstream side of the flow rate measuring section (16) and a temperature sensing element disposed on the downstream side. A computing unit outputs as a measurement a flow rate obtained based on the output Vh in a flow rate region where a flow rate is larger than a predetermined boundary flow rate, and outputs as a measurement a flow rate obtained based on the output Vout in a flow rate region where it is less than a boundary flow rate. Accordingly, a flow rate is measured with good precision and sensitivity over a wide flow rate range from a trace-amount flow rate region to a comparatively large flow rate region.