摘要:
A clock signal dividing circuit in which a dividing ratio is regulated by N/M (M and N are positive integers and satisfy M>N) includes: a variable delay circuit which gives a predetermined delay amount based on a control value to an input clock signal CKI to output an output clock signal CKO; and a variable delay control circuit which cumulatively adds values obtained by subtracting N from M every cycle of the input clock signal CKI, when the addition result is N or more, performs a calculation which subtracts N from the addition result to obtain a calculation result K, and calculates, to a maximum delay amount in the variable delay circuit corresponding to one cycle of the input clock signal CKI, a control value corresponding to a delay amount of K/N of the maximum delay amount to give the control value to the variable delay circuit.
摘要:
A clock converting circuit (1) receives and then converts m-phase clocks of a frequency f having a phase difference of 1/(f×m) to n-phase clocks of the frequency f having a phase difference of 1/(f×n). A single-phase clock generating circuit (2) receives the n-phase clocks of the frequency f having a phase difference equivalent time of 1/(f×n) to generate single-phase clocks in synchronism with the rising or falling edges of the n-phase clocks. Since the frequency of the m-phase clocks inputted to the clock converting circuit (1) is ‘f’, if a desired frequency of the single-phase clocks is decided, then ‘n’ can be obtained from the equation: the frequency of the single-phase clocks is equal to (f×n). This value of ‘n’ is set to the clock converting circuit (1), thereby obtaining the n-phase clocks of the frequency f from the m-phase clocks of the frequency f to provide single-phase clocks of a desired frequency.
摘要:
A clock converting circuit (1) receives and then converts m-phase clocks of a frequency f having a phase difference of 1/(f×m) to n-phase clocks of the frequency f having a phase difference of 1/(f×n). A single-phase clock generating circuit (2) receives the n-phase clocks of the frequency f having a phase difference equivalent time of 1/(f×n) to generate single-phase clocks in synchronism with the rising or falling edges of the n-phase clocks. Since the frequency of the m-phase clocks inputted to the clock converting circuit (1) is ‘f’, if a desired frequency of the single-phase clocks is decided, then ‘n’ can be obtained from the equation: the frequency of the single-phase clocks is equal to (f×n). This value of ‘n’ is set to the clock converting circuit (1), thereby obtaining the n-phase clocks of the frequency f from the m-phase clocks of the frequency f to provide single-phase clocks of a desired frequency.
摘要:
A signal measuring device, comprises one set, or a plurality of sets, of measuring unit(s) measuring an object of measurement in synch with a driving clock signal for measurement and outputting result of measurement as first data, and a timing identification unit which, in accordance with a measurement-start command, outputs a value, which differs every period, as second data in synch with a reference signal having a prescribed period and a speed lower than that of the driving clock signal; and a storage unit collecting and successively storing the first data and the second data as one set in synch with the driving clock signal.
摘要:
A clock signal dividing circuit in which a dividing ratio is regulated by N/M (M and N are positive integers and satisfy M>N) includes: a variable delay circuit which gives a predetermined delay amount based on a control value to an input clock signal CKI to output an output clock signal CKO; and a variable delay control circuit which cumulatively adds values obtained by subtracting N from M every cycle of the input clock signal CKI, when the addition result is N or more, performs a calculation which subtracts N from the addition result to obtain a calculation result K, and calculates, to a maximum delay amount in the variable delay circuit corresponding to one cycle of the input clock signal CKI, a control value corresponding to a delay amount of K/N of the maximum delay amount to give the control value to the variable delay circuit.
摘要:
The present invention relates to a technique capable of establishing communications between cores, which can provide a large degree of freedom of clock frequencies settable in each core, and thus providing deterministic operation, small communication latency, and high reliability. An object of the present invention is to provide a semiconductor device with high reliability, by analyzing factors affecting the performance of the semiconductor device, based on the communication histories within the semiconductor device, and reflecting the analysis back to the next generation semiconductor devices. The improved semiconductor device includes a core A for transmitting data in sync with the clock signal clkA, a core B for receiving data in sync with the clock signal clkB coincided with the rising or falling of the clock signal clkA in a constant period, and a controller for controlling communications between the core A and the core B. The controller controls in such way that the core B can receive only the data arriving prior to the setup of the clock signal clkB. The controller stores the history on a communication status between cores.
摘要:
A signal measuring device, comprises one set, or a plurality of sets, of measuring unit(s) measuring an object of measurement in synch with a driving clock signal for measurement and outputting result of measurement as first data, and a timing identification unit which, in accordance with a measurement-start command, outputs a value, which differs every period, as second data in synch with a reference signal having a prescribed period and a speed lower than that of the driving clock signal; and a storage unit collecting and successively storing the first data and the second data as one set in synch with the driving clock signal.
摘要:
The present invention relates to a technique capable of establishing communications between cores, which can provide a large degree of freedom of clock frequencies settable in each core, and thus providing deterministic operation, small communication latency, and high reliability. An object of the present invention is to provide a semiconductor device with high reliability, by analyzing factors affecting the performance of the semiconductor device, based on the communication histories within the semiconductor device, and reflecting the analysis back to the next generation semiconductor devices. The improved semiconductor device includes a core A for transmitting data in sync with the clock signal clkA, a core B for receiving data in sync with the clock signal clkB coincided with the rising or falling of the clock signal clkA in a constant period, and a controller for controlling communications between the core A and the core B. The controller controls in such way that the core B can receive only the data arriving prior to the setup of the clock signal clkB. The controller stores the history on a communication status between cores.
摘要:
To provide a rational frequency dividing circuit wherein the variations in cycle times of frequency divided clock signals are small, there are many occasions in which the minimum cycle time of frequency divided clock signals and test costs are small. A clock signal frequency dividing circuit, the frequency division ratio of which is specified as N/M where are both N and M are integers, includes an output clock selecting circuit (200) that selects one of three situations: an input clock signal is outputted as it is, the input clock signal is inverted and outputted and the input clock signal is not outputted; and a clock selection control circuit (100) that generates a control signal for controlling the foregoing selection of the output clock selecting circuit. The clock selection control circuit controls the foregoing selection of the output clock selecting circuit at every cycle of the input clock signal.
摘要:
To provide a rational frequency dividing circuit wherein the variations in cycle times of frequency divided clock signals are small, there are many occasions in which the minimum cycle time of frequency divided clock signals and test costs are small. A clock signal frequency dividing circuit, the frequency division ratio of which is specified as N/M where are both N and Mare integers, includes an output clock selecting circuit (200) that selects one of three situations: an input clock signal is outputted as it is, the input clock signal is inverted and outputted and the input clock signal is not outputted; and a clock selection control circuit (100) that generates a control signal for controlling the foregoing selection of the output clock selecting circuit. The clock selection control circuit controls the foregoing selection of the output clock selecting circuit at every cycle of the input clock signal.