摘要:
There is disclosed a system in which, according to the time domain method, a laser light is irradiated to an object to be measured, photon pulses based on the scattering light from the object to be measured are received, time series data are generated based on the light receiving signal, and based on the time series data thus generated, the particle size distribution of particles in the object to be measured is measured. Thus, the present invention achieves a considerable reduction in time required for finally obtaining the particle size based on the measured data, as compared with a conventional system using a calculator program.
摘要:
A differential refractometer in which: light from a light source is condensed on a lens; the light thus condensed is guided to a cell which houses a sample of which refractive index is to be measured and a reference of which refractive index is used as a reference value, the sample and the reference being housed as separated from each other in the cell; the light having passed through the cell is guided to an image sensor; and the amount of light deflection due to the difference in refractive index between the sample and the reference is measured, thereby to obtain the refractive index of the sample. The differential refractometer comprises: a light permeable member disposed at such a position that the light permeable member and the image sensor are optically conjugate with respect to the lens, the light permeable member carrying an image having at least two identification portions; and a spatial filter disposed between the light permeable member and the image sensor and adapted to spatially filter light portions which have passed through the two identification portions, the spatial filter causing at least one of the light portions thus spatially filtered to pass through the cell. The refractive index of the sample may be obtained based on the distance between the positions of images, on the detecting surface of the image sensor, of the two identification portions of the light permeable member. Such an arrangement may improve the measuring precision and reduce the number of component elements.
摘要:
The present invention relates to a light scattering intensity measuring apparatus capable of measuring, as a function of the scattering angle, the intensity of the light scattered from a sample. This apparatus comprises an ellipsoidal mirror 24 for reflecting and condensing the scattered light from a sample 23; an image-forming lens 25 disposed at the condensing point of light reflected by the ellipsoidal mirror 24 for forming, on a camera face, the image formed on the surface of the reflection mirror 24; and a camera 26 for recording the image formed by the image-forming lens 25. The scattered light in a wide angle range can be detected in a very short period of time (FIG. 1).
摘要:
A steering device for an outboard engine includes: a helm mechanism operable, in response to operation of a steering wheel, to steer the outboard engine and including a drive shaft parallel to an output shaft of the operation member; an electric assist mechanism for detecting steering torque, applied to the steering wheel, to assist operation of the helm mechanism on the basis of the detected steering torque; and a power transmission section for connecting the output shaft of the steering wheel and the helm mechanism to transmit rotation of the output shaft to the helm mechanism.
摘要:
A measurement pattern is moved on a display, and an image of the measurement pattern is captured by making a visual field of an image sensor follow the scroll of the measurement pattern. On the basis of the captured image, a motion picture response curve is obtained. Then, the motion picture response curve is transformed into an MTF (modulation transfer function). A normalized spatial frequency value N_Sf(a %) at which an MTF value starts declining by a predetermined percentage from a highest luminance portion of the MTF is determined. Then, the motion image quality of the display is evaluated on the basis of the normalized spatial frequency value N_Sf(a %). Thus, the evaluation of the motion image quality of the display can be achieved on the basis of an intuitively understandable motion image quality evaluation index.
摘要:
A test pattern is moved on a screen 5 subject to measurement with the field of view of an image sensor pursuing the motion of the test pattern so as to observe BEW. Subsequently, the field of view 33 of the image sensor is moved at the same velocity vc as in the foregoing observation to capture an image of a static pattern PE, and a blur width W along the scrolling direction that appears in a distribution profile of the captured image is observed. Based upon the blur width W and the exposure time of the image sensor for capturing the image of the static pattern PE, the moving velocity of the test pattern at the time of observation of the BEW is estimated, and by using the moving velocity, the BEW is normalized. Evaluation of the moving image quality of the screen is carried out by using the normalized N BEW. The moving velocity of the original test pattern can thus be estimated easily and accurately, and accordingly, the moving image quality of the screen can be evaluated accurately.
摘要:
A test image is scrolled on a screen of a display device subject to evaluation. A plurality of sample images that are created using the same test image and each indicate different motion picture display performance index values are prepared. The plurality of the sample images are displayed as still images in a condition that permits comparison with the scrolling test image. Then, a sample image that most resembles the pursuit captured test image is specified, and a motion picture display performance index value of the specified sample image is determined to be a motion picture display performance index value of the test image.
摘要:
A rare earth-element/cobalt type magnetic powder which possesses outstanding magnetic properties and which is useful for making a resin magnet is produced by a method which comprises thermally reducing a mixture consisting of oxide of samarium, oxide of praseodymium, optionally oxide of neodymium, and cobalt powder, thereby causing diffusion of consequently produced samarium, praseodymium, and/or neodymium in the cobalt powder, subjecting the resultant reaction product to a heat-treatment involving standing at 600.degree. to 900.degree. C. for 30 minutes to 5 hours and subsequent quenching from this temperature at a rate of not less than 10.degree. C./minute, adding the product of the heat-treatment to water, thereby converting the product into a slurry, treating the slurry with water and an aqueous acid solution, and comminuting the resulting powder into particles of an average diameter of 3 to 10 .mu.m thereby obtaining a magnetic powder having a composition represented by Sm.sub.1-x Pr.sub.x Co.sub.z or Sm.sub.1-x Pr.sub.x-y Nd.sub.y Co.sub.z (wherein x, y, and z satisfy the relations 0.05.ltoreq.x.ltoreq.0.40, 0.01.ltoreq.y.ltoreq.0.39, 0.01.ltoreq.x-y.ltoreq.0.39 and 4.7.ltoreq.z.ltoreq.5.3).
摘要:
In a steering device for an outboard engine, a drive shaft of a helm mechanism and an output shaft of an electric assist mechanism are disposed orthogonally to a steering output shaft of a steering operation member. Where the steering operation member is a tiller handle, a torque sensor, provided between an outboard engine body and the tiller handle, detects, as steering torque, a difference between steering angles of the engine body and the tiller handle, and the helm mechanism, drivable by the assist mechanism, operates to compensate for the difference between the steering angles. The assist mechanism and the helm mechanism are provided on the body of the boat.
摘要:
Impurity is removed from gas, the resultant gas is introduced into a cell 15, and the intensity of light transmitted through the cell 15 is measured as a reference. Gas containing impurity of which concentration is known, is introduced into the cell 15, and the intensity of light transmitted through the cell 15 is measured with the temperature and pressure maintained at those used at the measurement of the reference light intensity. Then, the absorbance of the impurity is obtained according to the ratio of the two light intensity data obtained by the two measurements above-mentioned. The impurity absorbance thus obtained is stored, in a memory 20a, as a function of an impurity concentration. Gas containing impurity of which concentration is unknown, is introduced into the cell 15, and the intensity of light transmitted through the cell 15 is measured with the temperature and pressure maintained at those used at the measurements above-mentioned. The absorbance of the impurity is obtained according to the last-measured light intensity and the reference light intensity. The absorbance thus obtained is applied to the function, thereby to obtain the impurity concentration.