摘要:
A sampler (1) samples an inputted base band signal in accordance with a sampling clock, and holds a sample value (S.sub.n). Delay circuits (7, 8) hold sample values (S.sub.n-1, S.sub.n-2), respectively. A decision circuit (2) determines the sample value (S.sub.n-1), and outputs data (d.sub.n-1). A constant multiplier (16) multiplies the data (d.sub.n -1) by a constant (.alpha.). A subtracter (17) subtracts the data (d.sub.n-1) from the sample value (S.sub.n-1). Another subtracter (13) subtracts the sample value (S.sub.n) from the sample value (S.sub.n-2). A multiplier (14) multiplies the output of the subtracter (17) by that of the subtracter (13), and outputs a timing error signal. A low-pass filter (15) extracts a low frequency component of the timing error signal, and supplies a control voltage to a voltage controlled oscillator (6). The voltage controlled oscillator (6) outputs a sampling clock having a frequency which depends on the control voltage.
摘要:
A data frame which is transmitted from a transmitting station is provided with an individual response part (RS) having response bits (S1 to SN) corresponding to all stations on a network, so that the transmitting station initializes the individual response part (RS) in data transfer. Each receiving station outputs its own state to a prescribed position of the individual response part, and the transmitting station monitors the individual response part. Thus, it is possible to correctly confirm whether or not the data is normally transferred to those of the receiving stations which are to receive data.
摘要:
A position detector 1 detects the position of a display screen 4, an image memory 2 stores image information, a selector 3 selects a portion of the image information stored in the image memory 2 in accordance with the position of the display screen 4 detected by the position detector 1 and supplies the selected portion to the display screen 4, and the display screen 4 displays the selected image information. The invention is characterized in that when it is assumed that the entire image information stored in the image memory 2 is drawn in a viewing field space fixed relative to the eye, the selector 3 selects the image information to be drawn on the display screen 4 lying in the viewing field space.
摘要:
An oscillator 1 generates a local oscillation signal. A quadrature detector 2 converts an inputted carrier band signal into an equivalent low-frequency signal on the basis of the local oscillation signal. A complex multiplier 3 performs complex multiplication of the equivalent low-frequency signal and a complex coefficient to output a detection signal. An amplitude error detecting portion 4 detects a complex amplitude error of the detection signal. A coefficient error calculating portion 5 calculates a quantity proportional to an error of the complex coefficient from the complex amplitude error and the equivalent low-frequency signal and outputs it. A filter 6 converts the output of the coefficient error detecting portion into a complex coefficient and provides it to the complex multiplier 3. A data regenerating portion 7 converts the detection signal into demodulation data and outputs it.
摘要:
In a transfer apparatus to which MIMO-OFDM is applied, a data transmission method and a data reception method are provided in which, even when there are frequency errors varying among transfer paths, the precision of estimation of an inverse propagation coefficient function can be improved, thereby making it possible to suppress a degradation in characteristics. Among symbols composed of a plurality of subcarriers orthognal to each other, the transfer apparatus uses, as a synchronization symbol, a symbol in which predetermined amplitudes and phases are assigned to a plurality of subcarriers spaced at predetermined frequency intervals. The synchronization symbol is divided into transmission antennas to generate a plurality of synchronization subsymbols, which are in turn simultaneously transmitted from a plurality of transmission antennas. A reception apparatus estimates a frequency error for each transfer path based on synchronization subsymbols included in signals received by a plurality of reception antennas, and based on the estimated frequency errors, corrects the received signals.
摘要:
A radio communication device that, even if it is interfered by a radio transmission station other than a radio transmission station with which it intends to communicate, estimates a signal transmitted from the intended radio transmission station by taking into account the influence of the interference, by obtaining an estimator of “s” that denotes a column vector representing a signal transmitted from the radio transmission station, in accordance with a following expression: s=RssHH(HRssHH+Ruu)−1r, where “Rss” denotes a covariance matrix of the column vector “s”, “r” denotes a column vector representing the signal received by the signal receiving unit, “H” denotes a matrix being the numerical sequence calculated by the first calculating unit, “Ruu” denotes a covariance matrix being the numerical sequence calculated by the second calculating unit, “H” denotes a complex conjugate transposition, and “−1” denotes an inverse matrix.
摘要翻译:一种无线电通信装置,即使是由与其打算进行通信的无线电发送站以外的无线电发送站的干扰,也可以通过考虑干扰的影响来估计从预期的无线电发送站发送的信号,由 根据以下表达式获得表示表示从无线电发送站发送的信号的列向量的“s”的估计器:s = RssH H(H s H H H H + Ruu) -1,其中“Rss”表示列向量“s”的协方差矩阵,“r”表示表示由信号接收单元接收的信号的列向量“H” 表示由第一计算单元计算的数字序列的矩阵,“Ruu”表示由第二计算单元计算的数字序列的协方差矩阵,“H”表示复共轭转置,“ -1 SUP>“表示逆矩阵。
摘要:
In an OFDM transmission scheme, in order to compensate any frequency response variation in time wise resulted from any distortion in a transmission path, out-of-synchronization with passage of time, frequency drift, and phase shift, and to improve a demodulation characteristic, a PS detector 261 in a receiver receiving an OFDM signal detects a pilot symbol. A PS1 TPFR calculator 62 calculates a frequency response of the transmission path for a first pilot symbol, while a PS2 TPFR calculator 63 calculates that for a second pilot symbol. Thereafter, a compensation vector calculator 64 calculates compensation vectors from the frequency responses of the transmission path for both of the first and second pilot symbols by linear approximation. A frequency response compensator 65 compensates the frequency response variation of subcarriers in a data symbol based on the calculated compensation vectors.
摘要:
An apparatus and method for OFDM demodulation establish symbol synchronization to minimize between-symbol interference even under an environment where multipath occurs.An incoming signal is an OFDM signal including a transmission symbol structured by a valid symbol period and a guard interval, and a predetermined synchronization symbol is included in the OFDM signal for every transmission frame. A correlator calculates how a signal generated by a synchronization symbol generator and the OFDM signal are correlated. A correlation calculator then calculates a correlation therefrom. An integrator integrates the calculated correlation by the guard interval. A timing determination device determines symbol timing from the integrated correlation. An FFT window generator outputs operation timing for Fourier transform from the determined symbol timing. Based on the signal outputted from the FFT window generator, the apparatus for OFDM demodulation extracts a signal in the valid symbol period from the transmission symbol for demodulation.
摘要:
In an OFDM transmission method, in order to compensate any frequency response variation time wise resulted from any distortion in a transmission path, out-of-synchronization with passage of time, frequency drift, and phase shift, and to improve a demodulation characteristic, a PS detector in a receiver receiving an OFDM signal detects a pilot symbol. A PS1 TPFR calculator calculates a frequency response of the transmission path for a first pilot symbol, while a PS2 TPFR calculator calculates a frequency response of the transmission path for a second pilot symbol. Thereafter, a compensation vector calculator calculates compensation vectors from the frequency responses of the transmission path for both the first and second pilot symbols by linear approximation. A frequency response compensator compensates the frequency response variation of subcarriers in a data symbol based on the calculated compensation vectors.
摘要:
In a transfer apparatus to which MIMO-OFDM is applied, a data transmission method and a data reception method are provided in which, even when there are frequency errors varying among transfer paths, the precision of estimation of an inverse propagation coefficient function can be improved, thereby making it possible to suppress a degradation in characteristics. Among symbols composed of a plurality of subcarriers orthognal to each other, the transfer apparatus uses, as a synchronization symbol, a symbol in which predetermined amplitudes and phases are assigned to a plurality of subcarriers spaced at predetermined frequency intervals. The synchronization symbol is divided into transmission antennas to generate a plurality of synchronization subsymbols, which are in turn simultaneously transmitted from a plurality of transmission antennas. A reception apparatus estimates a frequency error for each transfer path based on synchronization subsymbols included in signals received by a plurality of reception antennas, and based on the estimated frequency errors, corrects the received signals.