摘要:
An electronically commutated motor (ECM) often employs a Hall sensor for reliable operation. Even when a Hall sensor is omitted from a motor having a plurality of stator winding phases (24, 26) and a permanent-magnet rotor (22), one can reliably detect direction of rotation of the rotor by the steps of: (a) differentiating a voltage profile obtained by sampling either (1) induced voltage in a presently currentless phase winding or (2) voltage drop at a transistor, through which current is flowing to a presently energized phase winding, and (b) using such a differentiated signal (du_24″/dt, du_26″/dt) to control current flow in an associated phase winding. In this manner, one obtains reliable commutation, even if the motor is spatially separated from its commutation electronics.
摘要:
An electronically commutated motor (ECM) often employs a Hall sensor for reliable operation. Even when a Hall sensor is omitted from a motor structure, one can assure reliable startup, in a preferred rotation direction, if the motor (20) is designed with an auxiliary reluctance torque (Trel) which, when the motor is running in the preferred rotation direction (DIR=1), has a driving branch (130) that is effective where a gap (136) exists in an electromagnetic torque (Tel) between two successive driving portions of that electromagnetic torque (Tel), and by using the steps of (a) upon starting, controlling application of electrical energy to the motor (20) in such a way that, in the event of a start in the wrong rotation direction, the motor cannot overcome the braking reluctance torque (130′) which is then effective; and (b) monitoring rotor movement to determine whether the rotor (22) is rotating in the desired rotation direction (DIR=1).
摘要:
The invention relates to an electronically commutated motor (10) and to a method of controlling an electronically commutated motor (10). In order to reduce commutation noise, it is proposed to influence the working range of the power-stage transistors (20, 22) with the aid of a component (48), in such a way that each transistors produces, during energization of each respective stator winding, a substantially constant current through the stator winding (12, 14). Preferably, each power-stage transistor operates within a pinch-off range.
摘要:
A protective circuit, for reducing electrical disturbances or interference during operation of a DC motor, features a series transistor (62) arranged in a supply lead from a DC voltage source (12) to a DC motor; an auxiliary voltage source (52), associated with that series transistor, having a substantially constant auxiliary voltage which is configured to make the series transistor (62) fully conductive when a supply voltage furnished by the DC voltage source is substantially free of electrical interference; and an analyzer circuit (32, 34, 36) for analyzing the supply voltage, which analyzer circuit is configured, upon the occurrence of electrical interference in the supply voltage, to increase the resistance of the series transistor (62) correspondingly, in order to reduce the influence of that electrical interference on the operation of the DC motor.
摘要:
A control circuit (150) for controlling the current supplied to a winding strand (102) in an electric motor (143). The control circuit comprises at least one semiconductor switch (106) and a control unit (108) for controlling the semiconductor switch(es). Each semiconductor switch (106) is connected to a respective winding strand (102), in order to control the current in said winding strand. The control unit (108) comprises an output (110) for applying a control signal (CTRL) to the semiconductor switch (106), and is configured to set the output (110), at least upon switch-off of the semiconductor switch (106), to high impedance in order to prevent a voltage at the control unit output from influencing, during the switch-off operation, a signal input at the semiconductor switch (106). The improved control circuit increases motor efficiency and reduces commutation noise.
摘要:
A control circuit (150) for controlling the current supplied to a winding strand (102) in an electric motor (143). The control circuit comprises at least one semiconductor switch (106) and a control unit (108) for controlling the semiconductor switch(es). Each semiconductor switch (106) is connected to a respective winding strand (102), in order to control the current in said winding strand. The control unit (108) comprises an output (110) for applying a control signal (CTRL) to the semiconductor switch (106), and is configured to set the output (110), at least upon switch-off of the semiconductor switch (106), to high impedance in order to prevent a voltage at the control unit output from influencing, during the switch-off operation, a signal input at the semiconductor switch (106). The improved control circuit increases motor efficiency and reduces commutation noise.
摘要:
A protective circuit, for reducing electrical disturbances or interference during operation of a DC motor, features a series transistor (62) arranged in a supply lead from a DC voltage source (12) to a DC motor; an auxiliary voltage source (52), associated with that series transistor, having a substantially constant auxiliary voltage which is configured to make the series transistor (62) fully conductive when a supply voltage furnished by the DC voltage source is substantially free of electrical interference; and an analyzer circuit (32, 34, 36) for analyzing the supply voltage, which analyzer circuit is configured, upon the occurrence of electrical interference in the supply voltage, to increase the resistance of the series transistor (62) correspondingly, in order to reduce the influence of that electrical interference on the operation of the DC motor.
摘要:
An electronically commutated motor (ECM) often employs a Hall sensor for reliable operation. Even when a Hall sensor is omitted from a motor having a plurality of stator winding phases (24, 26) and a permanent-magnet rotor (22), one can reliably detect direction of rotation of the rotor by the steps of: (a) differentiating a voltage profile obtained by sampling either (1) induced voltage in a presently currentless phase winding or (2) voltage drop at a transistor, through which current is flowing to a presently energized phase winding, and (b) using such a differentiated signal (du—24″/dt, du—26″/dt) to control current flow in an associated phase winding. In this manner, one obtains reliable commutation, even if the motor is spatially separated from its commutation electronics.
摘要:
An electronically commutated motor (ECM) often employs a Hall sensor for reliable operation. Even when a Hall sensor is omitted from a motor having a plurality of stator winding phases (24, 26) and a permanent-magnet rotor (22), one can reliably detect direction of rotation of the rotor by the steps of: (a) differentiating a voltage profile obtained by sampling either (1) induced voltage in a presently currentless phase winding or (2) voltage drop at a transistor, through which current is flowing to a presently energized phase winding, and (b) using such a differentiated signal (du—24″/dt, du—26″/dt) to control current flow in an associated phase winding. In this manner, one obtains reliable commutation, even if the motor is spatially separated from its commutation electronics.
摘要:
A method of controlling synchronous running of a plurality of electronically commutated motors (22, 24, 26), each of which includes a stator having a stator winding (40, 42, 44), a permanent-magnet rotor (28, 30, 32), and at least one arrangement (34, 36, 38), associated with the respective motor, for sensing its rotor position and for generating a rotor position signal (H1, H2, H3). Also provided is an energization arrangement (46), to which the stator windings (40, 42, 44) of the motors are connected. The method includes the steps of detecting occurrence of a predetermined state of the rotor position signals (H1, H2, H3) and, in response thereto, triggering simultaneously commutation of the currents in all the motors.