摘要:
An optical disc storing a copyrighted digital product has a data area in which N processed parts are provided in order to certify that the stored digital product is an original one. A BCA provided on the optical disc stores judgment criteria information as well as N pieces of physical feature information. The judgment criteria information includes a numeric value N being the total number of processed parts, and a numeric value M being an integer between 0 and N inclusive and representing the security level to be assured for the digital data stored. When a numeric value P being the total number of processed parts in a normal state exceeds the numeric value M, a reproduction device reproduces the optical disc. When the numeric value P falls short of the numeric value M, the reproduction device does not reproduce the optical disc.
摘要:
A plurality of tracks on an optical disk are optically read to obtain a signal containing a plurality of LOW segments. Each of the plurality of LOW segments should correspond to a certification pit. Accordingly, if the interval between LOW segment Xj and nth succeeding LOW segment Xj+n exceeds the length of one track, a defect pit that could be confused with a certification pit is judged as being present between two certification pits.
摘要翻译:对光盘上的多个磁道进行光学读取以获得包含多个LOW段的信号。 多个LOW段中的每一个应对应于认证坑。 因此,如果LOW段X 和第n个后续段X≠j + n 之间的间隔超过一个轨道的长度,则可能与认证混淆的缺陷坑 坑被认为存在于两个认证坑之间。
摘要:
An optical disc includes a processed area that has been processed by the irradiation of a YAG laser. Concave pits and convex pits having a length 3T-14T (T=0.133 μm) are formed in an area of the optical disc other than the processed area. The processed area includes (1) a concave pit having a length X or (2) a pit string that has a length X and includes a convex pit from which a reflection layer has been removed. A specific area of the optical disc records physical character information that shows the location and length of the concave pit or the pit string in the processed area.
摘要:
An optical disc includes a processed area that has been processed by the irradiation of a YAG laser. Concave pits and convex pits having a length 3T-14T (T=0.133 μm) are formed in an area of the optical disc other than the processed area. The processed area includes (1) a concave pit having a length X or (2) a pit string that has a length X and includes a convex pit from which a reflection layer has been removed. A specific area of the optical disc records physical character information that shows the location and length of the concave pit or the pit string in the processed area.
摘要:
An optical disc includes a processed area that has been processed by the irradiation of a YAG laser. Concave pits and convex pits having a length 3T–14T (T=0.133 μm) are formed in an area of the optical disc other than the processed area. The processed area includes (1) a concave pit having a length X or (2) a pit string that has a length X and includes a convex pit from which a reflection layer has been removed. A specific area of the optical disc records physical character information that shows the location and length of the concave pit or the pit string in the processed area.
摘要:
An optical disc includes a processed area that has been processed by the irradiation of a YAG laser. Concave pits and convex pits having a length 3T-14T (T=0.133 μm) are formed in an area of the optical disc other than the processed area. The processed area includes (1) a concave pit having a length X or (2) a pit string that has a length X and includes a convex pit from which a reflection layer has been removed. A specific area of the optical disc records physical character information that shows the location and length of the concave pit or the pit string in the processed area.
摘要:
An optical disc includes a processed area that has been processed by the irradiation of a YAG laser. Concave pits and convex pits having a length 3T–14T (T=0.133 μm) are formed in an area of the optical disc other than the processed area. The processed area includes (1) a concave pit having a length X or (2) a pit string that has a length X and includes a convex pit from which a reflection layer has been removed. A specific area of the optical disc records physical character information that shows the location and length of the concave pit or the pit string in the processed area.
摘要:
An optical storage medium can be provided by which illegal usage of the optical storage medium involving an infringement on the copyright can be prevented effectively without impairment of the functions for reproducing physical format information and optical storage medium manufacturing information. The optical storage medium includes a main information region in which encrypted data information is recorded as a pit row that is capable of being read out by means of light and a control data region. In the control data region, key information for decoding the encryption of the data information, the physical format information and the optical storage medium manufacturing information are recorded by wobbling a groove.
摘要:
An information recording medium, such as an optical disk or the like, is provided for recording at least copyrighted content information and cipher key information. A part of the content information is scrambled and recorded in the information recording medium, and the scrambled and recorded part of the content information is obtained through scrambling using scramble key information, which is obtained by converting the cipher key information by the use of a non-scrambled part of the content information. The information recording medium has a recording area divided into a plurality of sectors. A plurality of data which the content information is divided into is recorded in the sectors. The non-scrambled part of the content information includes copy control information and a part of the content information that changes sector by sector.
摘要:
An optical disc has a plurality of sectors, where each of the plurality of sectors includes a plurality of frames. A sub information bit value of “0” or “1” is assigned to the plurality of frames constituting a sector, excluding the first and last frames. Edge positions are displaced so that leading/lagging errors appear in accordance with a certain rule when data fields of the frames to which the sub information bit value “1” is assigned are read. Edge positions are displaced so that leading/lagging errors appear in accordance with a reversal of the certain rule when data fields of the frames to which the sub information bit value “0” is assigned are read.