User trustworthiness
    2.
    发明授权
    User trustworthiness 有权
    用户可信赖性

    公开(公告)号:US09519682B1

    公开(公告)日:2016-12-13

    申请号:US13117037

    申请日:2011-05-26

    摘要: Embodiments are directed towards generating a unified user account trustworthiness system through user account trustworthiness scores. A trusted group of user accounts may be identified for a given action by grouping a plurality of user accounts into tiers based on a trustworthiness score of each user account for the given action. The tiers and/or trustworthiness scores may be employed to classify an item, such as a message as spam or non-spam, based on input from the user accounts. The trustworthiness scores may also be employed to determine if a user account is a robot account or a human account. The trusted group for a given action may dynamically evolve over time by regrouping the user accounts based on modified trustworthiness scores. A trustworthiness score of an individual user account may be modified based on input received from the individual user account and input from other user accounts.

    摘要翻译: 实施例旨在通过用户帐户可信度得分来生成统一的用户帐户可信赖性系统。 可以基于针对给定动作的每个用户帐户的可信度分数将多个用户帐户分组成层,可以为给定动作识别可信赖的用户帐户组。 层级和/或可信赖性分数可以用于基于来自用户帐户的输入来将项目(诸如作为垃圾邮件或非垃圾邮件)的消息分类。 还可以使用可信度分数来确定用户帐户是机器人帐户还是人类账户。 给定动作的受信任组可以通过基于修改的可信度得分重新分组用户账户而随着时间的推移而动态演变。 可以基于从单个用户帐户接收的输入和来自其他用户帐户的输入来修改个人用户帐户的可信度分数。

    EMBEDDABLE METADATA IN ELECTRONIC MAIL MESSAGES
    3.
    发明申请
    EMBEDDABLE METADATA IN ELECTRONIC MAIL MESSAGES 审中-公开
    电子邮件信息中的可嵌入元数据

    公开(公告)号:US20110185024A1

    公开(公告)日:2011-07-28

    申请号:US12694173

    申请日:2010-01-26

    IPC分类号: G06F15/16

    CPC分类号: G06Q10/107 H04L51/08

    摘要: Disclosed are apparatus and methods for annotating an electronic mail message and processing the annotated electronic mail message. More particularly, an electronic mail message may be generated and annotated such that the electronic mail message includes metadata identifying data provided in the electronic mail message. The electronic mail message may then be transmitted. When the annotated electronic mail message is received, at least a portion of the metadata may be obtained from the electronic mail message. At least a portion of the data in the electronic mail message may be identified using at least a portion of the metadata. At least a portion of the identified data in the electronic mail message may then be processed.

    摘要翻译: 公开了用于注释电子邮件消息并处理注释的电子邮件消息的装置和方法。 更具体地,电子邮件消息可以被生成和注释,使得电子邮件消息包括识别电子邮件消息中提供的数据的元数据。 然后可以发送电子邮件消息。 当接收到带注释的电子邮件消息时,可以从电子邮件消息获得元数据的至少一部分。 可以使用元数据的至少一部分来识别电子邮件消息中的数据的至少一部分。 然后可以处理电子邮件消息中的所识别的数据的至少一部分。

    Anti-spam transient entity classification
    4.
    发明授权
    Anti-spam transient entity classification 有权
    反垃圾邮件瞬态实体分类

    公开(公告)号:US09442881B1

    公开(公告)日:2016-09-13

    申请号:US13222720

    申请日:2011-08-31

    IPC分类号: G06F15/16

    摘要: Embodiments are directed towards multi-level entity classification. An object associated with an entity is received. In one embodiment the object comprises and email and the entity comprises the IP address of a sending email server. If the entity has already been classified, as indicated by an entity classification cache, then a corresponding action is taken on the object. However, if the entity has not been classified, the entity is submitted to a fast classifier for classification. A feature collector concurrently fetches available features, including fast features and full features. The fast classifier classifies the entity based on the fast features, storing the result in the entity classification cache. Subsequent objects associated with the entity are processed based on the cached result of the fast classifier. Then, a full classifier classifies the entity based on at least the full features, storing the result in the entity classification cache.

    摘要翻译: 实施例针对多级实体分类。 接收与实体相关联的对象。 在一个实施例中,对象包括和电子邮件,并且实体包括发送电子邮件服务器的IP地址。 如果实体已经被分类,如实体分类缓存所示,则对对象采取相应的动作。 但是,如果实体尚未分类,则将实体提交给快速分类器进行分类。 功能收集器同时提取可用功能,包括快速功能和完整功能。 快速分类器基于快速特征对实体进行分类,将结果存储在实体分类缓存中。 基于快速分类器的缓存结果处理与实体相关联的后续对象。 然后,完整分类器至少基于全部特征对实体进行分类,将结果存储在实体分类缓存中。

    Detection of outbound sending of spam
    5.
    发明授权
    Detection of outbound sending of spam 有权
    检测出站发送垃圾邮件

    公开(公告)号:US08868663B2

    公开(公告)日:2014-10-21

    申请号:US12561940

    申请日:2009-09-17

    IPC分类号: G06F15/16 H04L12/58 H04L29/06

    摘要: The invention provides for at least three processes for detecting the probability of abusive use of a message account for sending large amounts of unsolicited messages, such as spam, to other message accounts. For example, information provided at registration for a new message account can be processed to determine the likelihood of abusive use of that message account. Also, inbound messages can be processed to determine if the message account that sent the inbound message is abusing the use of that message account. Additionally, outbound messages can be processed to determine if the message account that is attempting to send an outbound message is abusing the use of that message account. Each of these three processes can operate separately or in any combination with each other to further improve the probability that abusive use of a message account will be detected promptly and accurately.

    摘要翻译: 本发明提供至少三个过程,用于检测滥用于消息帐户以将大量未经请求的消息(例如垃圾邮件)发送到其他消息帐户的可能性的过程。 例如,可以处理在注册新消息帐户时提供的信息,以确定滥用该消息帐户的可能性。 此外,可以处理入站邮件以确定发送入站邮件的邮件帐户是否滥用该邮件帐户的使用。 此外,可以处理出站邮件,以确定尝试发送出站邮件的邮件帐户是否滥用该邮件帐户的使用。 这三个进程中的每一个可以分开地或彼此以任何组合的方式进行操作,以进一步提高迅速且准确地检测到滥用消息账户的可能性。

    Spam filtering based on statistics and token frequency modeling
    6.
    发明授权
    Spam filtering based on statistics and token frequency modeling 有权
    基于统计和令牌频率建模的垃圾邮件过滤

    公开(公告)号:US08364766B2

    公开(公告)日:2013-01-29

    申请号:US12328723

    申请日:2008-12-04

    IPC分类号: G06F15/16

    CPC分类号: H04L51/12 G06N7/005

    摘要: Embodiments are directed towards classifying messages as spam using a two phased approach. The first phase employs a statistical classifier to classify messages based on message content. The second phase targets specific message types to capture dynamic characteristics of the messages and identify spam messages using a token frequency based approach. A client component receives messages and sends them to the statistical classifier, which determines a probability that a message belongs to a particular type of class. The statistical classifier further provides other information about a message, including, a token list, and token thresholds. The message class, token list, and thresholds are provided to the second phase where a number of spam tokens in a given message for a given message class are determined. Based on the threshold, the client component then determines whether the message is spam or non-spam.

    摘要翻译: 实施例针对使用两阶段方法将消息分类为垃圾邮件。 第一阶段采用统计分类器根据消息内容分类消息。 第二阶段针对特定的消息类型来捕获消息的动态特征,并使用基于令牌频率的方法识别垃圾邮件。 客户端组件接收消息并将其发送到统计分类器,该分类器确定消息属于特定类型的类的概率。 统计分类器还提供关于消息的其他信息,包括令牌列表和令牌阈值。 消息类别,令牌列表和阈值被提供给第二阶段,其中给定消息类别的给定消息中的多个垃圾邮件令牌被确定。 基于阈值,客户端组件然后确定消息是垃圾邮件还是非垃圾邮件。

    MINING GLOBAL EMAIL FOLDERS FOR IDENTIFYING AUTO-FOLDER TAGS
    7.
    发明申请
    MINING GLOBAL EMAIL FOLDERS FOR IDENTIFYING AUTO-FOLDER TAGS 有权
    采矿全球电子邮件文件夹,用于识别自动文件夹标签

    公开(公告)号:US20120173533A1

    公开(公告)日:2012-07-05

    申请号:US12984539

    申请日:2011-01-04

    IPC分类号: G06F17/30

    CPC分类号: G06Q10/00

    摘要: Embodiments are directed towards identifying auto-folder tags for messages by using a combinational optimization approach of bi-clustering folder names and features of messages based on relationship strengths. The combinational optimization approach of bi-clustering, generally, groups a plurality of folder names and a plurality of features into one or more metafolders to optimize a cost. The cost is based on an aggregate of cut relationship strengths, where a cut results when a relationship folder name and feature are grouped in separate metafolders. Furthermore, the plurality of folder names and the plurality of features are obtained by monitoring actions of a plurality of users, where the folder names are user generated folder names and features are from a plurality of messages. The metafolders may be used to tag new user messages with an auto-folder tag.

    摘要翻译: 实施例旨在通过使用基于关系强度的消息的双重聚类文件夹名称和特征的组合优化方法来识别消息的自动文件夹标签。 双组合的组合优化方法通常将多个文件夹名称和多个特征分组到一个或多个元文件夹中以优化成本。 成本基于剪切关系强度的总和,当关系文件夹名称和要素分组在单独的元文件夹中时,会产生裁剪。 此外,通过监视多个用户的动作来获得多个文件夹名称和多个特征,其中文件夹名称是用户生成的文件夹名称和特征来自多个消息。 元文件夹可用于使用自动文件夹标签来标记新的用户消息。

    DETECTION OF OUTBOUND SENDING OF SPAM
    8.
    发明申请
    DETECTION OF OUTBOUND SENDING OF SPAM 有权
    检测垃圾邮件的外发

    公开(公告)号:US20100077040A1

    公开(公告)日:2010-03-25

    申请号:US12561940

    申请日:2009-09-17

    IPC分类号: G06F15/16

    摘要: The invention provides for at least three processes for detecting the probability of abusive use of a message account for sending large amounts of unsolicited messages, such as spam, to other message accounts. For example, information provided at registration for a new message account can be processed to determine the likelihood of abusive use of that message account. Also, inbound messages can be processed to determine if the message account that sent the inbound message is abusing the use of that message account. Additionally, outbound messages can be processed to determine if the message account that is attempting to send an outbound message is abusing the use of that message account. Each of these three processes can operate separately or in any combination with each other to further improve the probability that abusive use of a message account will be detected promptly and accurately.

    摘要翻译: 本发明提供至少三个过程,用于检测滥用于消息帐户以将大量未经请求的消息(例如垃圾邮件)发送到其他消息帐户的可能性的过程。 例如,可以处理在注册新消息帐户时提供的信息,以确定滥用该消息帐户的可能性。 此外,可以处理入站邮件以确定发送入站邮件的邮件帐户是否滥用该邮件帐户的使用。 此外,可以处理出站邮件,以确定尝试发送出站邮件的邮件帐户是否滥用该邮件帐户的使用。 这三个进程中的每一个可以分开地或彼此以任何组合的方式进行操作,以进一步提高迅速且准确地检测到滥用消息账户的可能性。

    Mining global email folders for identifying auto-folder tags
    9.
    发明授权
    Mining global email folders for identifying auto-folder tags 有权
    挖掘用于识别自动文件夹标签的全局电子邮件文件夹

    公开(公告)号:US08463827B2

    公开(公告)日:2013-06-11

    申请号:US12984539

    申请日:2011-01-04

    IPC分类号: G06F12/00 G06F17/30

    CPC分类号: G06Q10/00

    摘要: Embodiments are directed towards identifying auto-folder tags for messages by using a combinational optimization approach of bi-clustering folder names and features of messages based on relationship strengths. The combinational optimization approach of bi-clustering, generally, groups a plurality of folder names and a plurality of features into one or more metafolders to optimize a cost. The cost is based on an aggregate of cut relationship strengths, where a cut results when a relationship folder name and feature are grouped in separate metafolders. Furthermore, the plurality of folder names and the plurality of features are obtained by monitoring actions of a plurality of users, where the folder names are user generated folder names and features are from a plurality of messages. The metafolders may be used to tag new user messages with an auto-folder tag.

    摘要翻译: 实施例旨在通过使用基于关系强度的消息的双重聚类文件夹名称和特征的组合优化方法来识别消息的自动文件夹标签。 双组合的组合优化方法通常将多个文件夹名称和多个特征分组到一个或多个元文件夹中以优化成本。 成本基于剪切关系强度的总和,当关系文件夹名称和要素分组在单独的元文件夹中时,会产生裁剪。 此外,通过监视多个用户的动作来获得多个文件夹名称和多个特征,其中文件夹名称是用户生成的文件夹名称和特征来自多个消息。 元文件夹可用于使用自动文件夹标签来标记新的用户消息。