摘要:
A printing platform receives (102) (preferably in-line with a semiconductor device printing process (101)) a substrate having at least one semiconductor device printed thereon and further having a test structure printed thereon, which test structure comprises at least one printed semiconductor layer. These teachings then provide for the automatic testing (103) of the test structure with respect to at least one static (i.e., relatively unchanging) electrical characteristic metric. The static electrical characteristic metric (or metrics) of choice will likely vary with the application setting but can include, for example, a measure of electrical resistance, a measure of electrical reactance, and/or a measure of electrical continuity. Optionally (though preferably) the semiconductor device printing process itself is then adjusted (105) as a function, at least in part, of this metric.
摘要:
An electroluminescent display device contains an electroluminescent phosphor sandwiched between a pair of electrodes and a graphic arts element. The device is fabricated by bonding a generic electroluminescent base laminate containing an electrode and an electroluminescent layer, to a custom graphic arts film containing a graphic element and a corresponding electrode. The generic electroluminescent base laminate is made at a first location or time, and the custom graphic arts film is made at a second location or time.
摘要:
An integrated electrically-responsive lenticular display apparatus (300) includes a lenticular lens (301) integrally combined with at least one electrically-responsive light-emissive pattern (202). The electrically-responsive light-emissive pattern (202) is a printed electrically-responsive light-emissive pattern. The printed pattern may be printed directly onto the lenticular lens (301) or onto a substrate (502), which then attaches to the lenticular lens (301). The electrically-responsive light-emissive pattern (202) can be interleaved with another pattern (203). The other pattern (203) may include another electrically-responsive light-emissive pattern or a non-electrically-responsive light-emissive pattern.
摘要:
An electroluminescent display device contains an electroluminescent phosphor sandwiched between a pair of electrodes and a graphic arts element. The device is fabricated by bonding a generic electroluminescent base laminate containing an electrode and an electroluminescent layer, to a custom graphic arts film containing a graphic element and a corresponding electrode. The generic electroluminescent base laminate is made at a first location or time, and the custom graphic arts film is made at a second location or time.
摘要:
An electroluminescent display device is fabricated by creating a generic electroluminescent base laminate or precursor containing an base electrode and an electroluminescent layer. A custom graphic arts film or precursor containing a graphic element and a corresponding electrode is also fabricated. The two precursors are then bonded together using an adhesive to create the customized EL display, so that only the sections of the electroluminescent display device that are associated with the corresponding electrode on the graphic arts film emit light.
摘要:
A printed multilayer electronic circuit has printed electronic components on a first level circuit. Electrical conductors are printed on the first level circuit, electrically connected to the electronic components. A layer of dielectric material is printed over the printed electrical conductors. The dielectric layer contains apertures or openings that extend vertically through the dielectric layer down to the electrical conductors. A second set of electrical conductors are then printed on the dielectric layer, situated around the apertures. Electrically conductive material is printed in the apertures so that an electrical connection is made from the second set of electrical conductors to the electrical conductors on the lower level. A second level circuit having additional electronic components is then formed on the dielectric layer and the second set of conductors, so that these electronic components are electrically connected to the electronic components on the first level circuit through the path of the printed second set of electrical conductors, the printed electrically conductive material, and the printed electrical conductors on the lower level.
摘要:
An electroluminescent display contains an array of dynamically addressable pixels. The pixels are arranged on one side of a carrier substrate. Conductive vias in the substrate are electrically connected to each of the pixels. Each pixel consists of a bottom electrode that is coupled to a via, an electroluminescent material, and a dielectric material. A common top electrode is disposed on the dielectric material. A driver circuit conductor or connector is situated on the other side of the substrate and is electrically coupled to each of the conductive vias and to the common top electrode, so that each pixel can be individually addressed to illuminate the electroluminescent material on individual pixels.
摘要:
An electroluminescent display contains an array of dynamically addressable pixels. The pixels are arranged on one side of a carrier substrate. Conductive vias in the substrate are electrically connected to each of the pixels. Each pixel consists of a bottom electrode that is coupled to a via, an electroluminescent material, and a dielectric material. A common top electrode is disposed on the dielectric material. A driver circuit conductor or connector is situated on the other side of the substrate and is electrically coupled to each of the conductive vias and to the common top electrode, so that each pixel can be individually addressed to illuminate the electroluminescent material on individual pixels.
摘要:
A light emissive printed articles (101) include printing with ink that includes quantum dots in lieu of pigment. A pump light that emits light with photon energies sufficient to excite the quantum dot ink (102) is used to drive light emission.
摘要:
A light emissive printed articles (101) include printing with ink that includes quantum dots in lieu of pigment. A pump light that emits light with photon energies sufficient to excite the quantum dot ink (102) is used to drive light emission.