摘要:
A solar-thermal gas turbine generator is equipped with a compressor, a heat receiver, and a turbine. Additionally, there is a generator that is driven by the solar-thermal gas turbine to generate power; and a steam power generation cycle in which high-temperature air exhausted from the turbine is introduced into a steam generator and in which a steam turbine that is operated with steam generated at the steam generator drives a generator to generator power, wherein a solar-thermal steam generator that generates steam by being heated with heat collected by the light collector is provided upstream of the steam turbine of the steam power generation cycle, and a distribution ratio for distributing the sunlight collected by the light collector to the heat receiver and the solar-thermal steam generator is adjusted in accordance with the sunlight intensity.
摘要:
A solar-thermal gas turbine generator is equipped with a compressor, a heat receiver, and a turbine. Additionally, there is a generator that is driven by the solar-thermal gas turbine to generate power; and a steam power generation cycle in which high-temperature air exhausted from the turbine is introduced into a steam generator and in which a steam turbine that is operated with steam generated at the steam generator drives a generator to generator power, wherein a solar-thermal steam generator that generates steam by being heated with heat collected by the light collector is provided upstream of the steam turbine of the steam power generation cycle, and a distribution ratio for distributing the sunlight collected by the light collector to the heat receiver and the solar-thermal steam generator is adjusted in accordance with the sunlight intensity.
摘要:
A gas turbine plant associated with a solar thermal electric generation system has a heat receiver which receives heat from the sun, a gas turbine having a compressor and a turbine which operates with an operating fluid compressed by the compressor and heated by the heat receiver, a temperature sensor which detects heat from the sun, an auxiliary driving device which is driven based on the temperature of the heat detected by the temperature sensor, and which starts the gas turbine, and a generator which converts kinetic energy generated as a result of the rotation of the turbine into electric energy.
摘要:
Provided is a concentrated solar power gas turbine that enables efficient operation to allow a reduction in capacity of the start-up driving source used for compensating for the shortage of solar heat quantity at the start-up/acceleration. The concentrated solar power gas turbine (GT1) includes a compressor (1) for taking in air and increasing the pressure thereof, the compressor (1) being provided with a start-up driving source for start-up/acceleration; a solar central receiver (2) for heating the high-pressure air, the pressure of which has been increased by the compressor (1), by the heat of sunlight collected by a heliostat to increase the temperature thereof; and a turbine (3) for converting thermal energy possessed by the high-temperature/high-pressure air to mechanical energy, wherein the fluid flow in the solar central receiver (2) is shut off to store heat in the period from the shutdown of the turbine (3) to the start-up thereof.
摘要:
A solar receiver is disposed on a top portion of a tower provided upright on the ground for heating a compressible working fluid by means of heat converted from sunlight collected by heliostats disposed on the ground, to raise the temperature of the compressible working fluid. The solar receiver has modules disposed back-to-back, and each of which includes a casing having a bottom plate to be fixed to the top-portion upper surface of the tower. A heat-transfer-tube unit is accommodated in the casing and includes heat transfer tubes. A sunlight inlet port having a circular shape in front view or an elliptical shape in front view is provided at the center portion of a plate-like member whose lower end is connected to an outer circumferential end of the bottom plate to constitute the casing and that extends obliquely upward from the outer circumferential end.
摘要:
Heat transfer pipes uniformly heat a compressible working fluid passing there through with a simplified supporting structure and reduced manufacturing costs. A solar central receiver (3) on top of a tower on the ground includes heat transfer pipes (16) arranged in the south-north direction; and a casing (14) accommodating the pipes (16) and has a solar radiation inlet (15) through which sunlight reflected by heliostats on the ground is transmitted to the lower surface side of the pipes (16). The pipes (16) are at equal intervals on a solar radiation receiving surface (11) parallel to a heliostat field on which the collectors are, or inclined with respect to the heliostat field on which the collectors are, and the diameters of the pipes (16) are substantially inversely proportional to the shortest distance from the inlet (15) to the central axes of the respective pipes (16) in the longitudinal direction.
摘要:
There is provided a combustor comprising a fuel nozzle which is comprised of a rodlike body which has a fuel passage and which is located in an air passage; a plurality of hollow members which are connected to the fuel passage and which extend in radial directions from the rodlike body into the air passage; at least one injection port formed in each hollow member to inject a fuel from the fuel passage into the air passage; and a projection which extends from a farmost inner wall of each hollow member that is most distant from an axis of the rodlike body to the injection port that is most distant from the axis. A hole for leaking fuel that is connected to an air passage may be formed in a farmost inner wall of the hollow member that is more distant from an axis of a rodlike body than the injection port that is most distant from the axis, or may be formed to be adjacent to all the injection ports on an upstream or downstream side in the direction of the airflow. Thus, a vortex does not occur in the hollow column.
摘要:
Provided is a seal structure, according to the present invention, for sealing opposite surfaces of flanges between adjacent tail ducts, which can be prevented from being worn or aged deteriorated due to a thermal deformation in a high temperature atmosphere or vibration of a gas turbine combustor, and which can maintain a satisfactory sealing function for a long time. The seal structure is characterized in that recess grooves are formed in opposed surfaces of adjacent flanges at the outlet end of tail ducts, striding between the opposed surfaces, a seal assembly composed of a seal member and a leaf spring is inserted in the recess grooves, the seal member has a pair of continuous beads which are arranged facing the inner surfaces, on the combustion gas passage side, of the recess grooves, striding between the opposed surfaces of the flanges within the recess grooves, the leaf spring is arranged so as to be contact with the seal member within the recess grooves so that the beads are pressed against the surfaces on the combustion gas passage side by the resilient force of the leaf spring so as to create seal surfaces.
摘要:
A gas turbine combustor includes a side wall, for defining a combustion volume, having upstream and downstream ends, a pilot nozzle, disposed adjacent the upstream end of the side wall, for discharging a pilot fuel to form a diffusion flame in the combustion volume, and a plurality of main nozzles, provided around the pilot nozzles, for discharging a fuel-air mixture to form premixed flames in the combustion volume. Film air is supplied into the combustion volume downstream of the main nozzles along the inner surface of the side wall to reduce the fuel-air ratio in a region adjacent the inner surface of the side wall and to restrain a combustion-driven oscillation in the combustion volume.
摘要:
A gas turbine blade having a plurality of shower head cooling holes (1), bored in a blade leading edge portion, are arranged along a single line which is biased so as to correspond to the direction of swirling flow in a combustor. The swirling flow is clockwise or counter-clockwise. In particular, if the flow is clockwise, the cooling holes (1) are biased to the left hand side, as seen from upstream of the blade, toward a blade hub side (HS) from a blade tip side (TS). Also, if the flow is counter-clockwise, the cooling holes (1) are arrayed on one line which is biased to the reverse side relative to the latter case. The influence of the swirling flow is thus avoided, and the pressure at each position of the cooling holes (1) is constant, so that uniform cooling can be attained.