摘要:
A technology which makes it possible to prolong the service life of a porous electrode constituted by a sintered body of an electrode metal material and a ceramic material, and the service life of an NOx sensor element having the porous electrode. The porous electrode is produced so as to have a total pore volute of at least 0.013 ml/g and a peak pore diameter of at least 0.31 μm as measured by mercury penetration method, by a process wherein a composition which includes the electrode material and the ceramic material and to which a vanishable solid material that vanishes by firing is formed into a thin film, which is then fired to form the sintered body which consists of the electrode material and the ceramic material and which has a multiplicity of pores formed as a result of vanishing of the vanishable solid material.
摘要:
A detecting electrode comprises a first cermet electrode layer formed directly on a solid electrolyte layer and a second cermet electrode layer formed on the first cermet electrode layer. The ratio between Pt and Rh in the first cermet electrode layer ranges from 100:0 to 25:75 by weight. The ratio between Pt and Rh in the second cermet electrode layer ranges from 25:75 to 0:100 by weight.
摘要:
A detecting electrode comprises a first cermet electrode layer formed directly on a solid electrolyte layer and a second cermet electrode layer formed on the first cermet electrode layer. A ratio between an alloy of Pt—Rh and ZrO2 in the first cermet electrode layer ranges from 20:80 to 50:50 by volume ratio. On the other hand, a ratio between an alloy of Pt—Rh and ZrO2 in the second cermet electrode layer ranges from 60:40 to 50:50 by volume ratio.
摘要:
A method of treating a gas sensor element for improving measurement characteristics thereof, including: heating the gas sensor element at a temperature of 600-1000° C. for 3-24 hours in a treatment atmosphere in which an oxygen concentration is regulated to be not higher than 0.2% and in which are included: (A) not lower than 1000 ppm of an adsorptive gas component wherein an adsorptive capable of being adsorbed on the measuring electrode is bound to oxygen; and (B) a combustible gas in an amount that can be substantially stoichiometrically oxidized by oxygen that is generated upon reduction or decomposition of the adsorptive gas component, so that the adsorptive gas component is reduced or decomposed for permitting the adsorptive in the adsorptive gas component to be adsorbed on the measuring electrode, and so that the noble metal material of the measuring electrode is reduced.
摘要:
A gas sensor and nitrogen oxide sensor, which, when fitted to the exhaust system of an internal combustion engine, can suppress the influence of harmful substances contained in a measurement gas and can prevent the reduction in sensitivity over time. A harmful substance-trapping layer is formed at a gas inlet for introducing a to-be-measured gas from an external space into an internal space, and in a buffering space formed between diffusion resistance portions. In a trap-formed portion of a gas passage in which the harmful substance-trapping layer is formed, the measurement gas can pass in an amount of 80% or more of when the harmful substance-trapping layer is not formed in the trap-formed portion. A diffusion resistance is attained in the diffusion resistance portions; a harmful substance is trapped in the harmful substance-trapping layer; and the measurement gas is allowed to flow into a detection electrode side.
摘要:
A gas sensor includes a sensor element having a specific function, and a housing containing the sensor element therein and including a thread section, and a sealing surface which forms a sealing section together with an installation section at a position deeper than the thread section in a direction in which the sensor element is inserted. When the housing is screwed into the installation section, the release torque of the housing at 850° C. (1123 K) is 9 N·m or more, and an estimated value of a gap formed between the sealing surface and the installation section at 850° C. (1123 K) that is calculated according to a specific equation is 31 μm or less.
摘要:
An ammonia concentration detection sensor 100, has: a sensor element 110 capable of detecting the ammonia concentration of a measurement target gas; and a protective cover 120 that regulates the inflow of the measurement target gas into the sensor element 110 and protects the sensor element 110. The protective cover 120 is coated with a coating layer.
摘要:
A gas sensor includes an internal space, diffusion control part, pumping cell, and measuring cell. The diffusion control part communicates with the internal space and has a slit-like shape with a smaller thickness than that of the internal space. The pumping cell pumps out oxygen from the internal space when voltage is applied between a first electrode formed on a surface of the internal space and a second electrode formed outside the internal space. The measuring cell measures a current flowing between a third and fourth electrodes when a voltage is applied between the third and fourth electrodes. The third electrode is formed in the diffusion control part, and can reduce an oxide gas component in a predetermined gas component to which a predetermined diffusion resistance has been applied by the diffusion control part. The fourth electrode is formed in a part different from the diffusion control part.
摘要:
A gas sensor having a sensor element that includes an inner space for introducing a measurement gas therein from an external space and a pump cell which has a first electrode formed on a surface of the inner space and a second electrode formed in a space different from the inner space and is provided to pump oxygen out of the inner space by applying a predetermined voltage between the first electrode and the second electrode. Assuming that the length of the inner space in a short-side direction of the sensor element as viewed from the front end portion side thereof is x1 and the length of the inner space in a longitudinal direction of the sensor element as viewed from the front end portion side thereof is x2, the following inequality is satisfied: 0.05≦x1/x2≦0.25.
摘要:
A flow path from outer gas introduction apertures 144a to inner gas introduction apertures 134a has a narrower-width flow passage formed by an inner wall member 150. This structure effectively lowers the probability that a liquid, such as water, entering from the outer gas introduction apertures 144a passes through a gas inflow chamber 122 and reaches a sensor element 110, compared with a structure without the inner wall member 150. The inner wall member 150 is formed as a solid member that is capable of storing the surrounding heat. Even if there is a certain event that has the potential of causing a temperature decrease of the sensor element 110, for example, an abrupt change in flow rate of an object gas, the heat stored in the inner wall member 150 effectively prevents a temperature decrease of the sensor element 110. This structure prevents the occurrence of cracking in the sensor element 110, compared with a conventional sensor structure having a double-layered protective cover.