Quantitative perfusion analysis
    1.
    发明授权
    Quantitative perfusion analysis 有权
    定量灌注分析

    公开(公告)号:US09406146B2

    公开(公告)日:2016-08-02

    申请号:US13380610

    申请日:2010-06-23

    Abstract: A system is disclosed for quantitative analysis of perfusion images comprising image elements having intensity values associated therewith. The system comprises a frequency distribution computing subsystem (1) for computing a plurality of frequency distributions of the intensity values of at least part of the images. The system comprises a perfusion information extractor (2) for extracting information relating to perfusion from the plurality of frequency distributions. The perfusion information extractor (2) comprises a shift detector (3) for detecting a shift of the intensity values of the frequency distribution. The perfusion information extractor (2) is arranged for extracting the information relating to perfusion, based on the detected shift. A user interface element (8) enables a user to indicate a boundary between the core region and the rim region by a single degree of freedom. A vesselness subsystem (9) associates a vesselness value with an image element.

    Abstract translation: 公开了一种用于定量分析包括具有与其相关联的强度值的图像元素的灌注图像的系统。 该系统包括用于计算至少部分图像的强度值的多个频率分布的频率分布计算子系统(1)。 该系统包括用于从多个频率分布中提取与灌注相关的信息的灌注信息提取器(2)。 灌注信息提取器(2)包括用于检测频率分布的强度值的偏移的移位检测器(3)。 灌注信息提取器(2)被布置为基于检测到的移位来提取与灌注有关的信息。 用户界面元件(8)使得用户能够通过单个自由度来指示核心区域和边缘区域之间的边界。 容器子系统(9)将容器值与图像元素相关联。

    SYSTEM FOR IMAGE ANALYSIS AND METHOD THEREOF
    2.
    发明申请
    SYSTEM FOR IMAGE ANALYSIS AND METHOD THEREOF 有权
    图像分析系统及其方法

    公开(公告)号:US20120188361A1

    公开(公告)日:2012-07-26

    申请号:US13355358

    申请日:2012-01-20

    Abstract: A system for image analysis and a method thereof are disclosed. In one embodiment, the system includes a detector configured to receive an image of a sample, isolate particles from a background image of the sample image and detect positions of the isolated particles and a first operator configured to calculate a static degree of randomness values of the particles using Lennard-Jones potentials based on the detected positions. The system may further include a second operator configured to obtain a dynamic degree of randomness values of particles based at least in part on the sum of tensile forces between particles by implicit integration added until the particles reach a dynamic equilibrium, and calculate a positional degree of randomness of particles based at least in part on subtraction of the dynamic degree of randomness values from the static degree of randomness values.

    Abstract translation: 公开了一种图像分析系统及其方法。 在一个实施例中,系统包括检测器,其被配置为接收样本的图像,从样本图像的背景图像中分离粒子并检测孤立粒子的位置,以及第一操作器,被配置为计算静态随机度值 基于检测到的位置使用Lennard-Jones电位的粒子。 该系统可以进一步包括第二操作器,其被配置为至少部分地通过添加的隐式积分至少部分地获得颗粒之间的拉伸力的总和来获得粒子的随机值的动态度,直到粒子达到动态平衡,并且计算粒子的位置度 至少部分地基于从静态随机度值中减去动态随机性值的粒子的随机性。

    Method and apparatus for determining ambient conditions from an image
sequence, such as fog, haze or shadows
    5.
    发明授权
    Method and apparatus for determining ambient conditions from an image sequence, such as fog, haze or shadows 失效
    用于根据图像序列确定环境条件的方法和装置,例如雾,雾或阴影

    公开(公告)号:US6037976A

    公开(公告)日:2000-03-14

    申请号:US742433

    申请日:1996-10-30

    Abstract: A method and apparatus for determining certain ambient conditions in a scene by analyzing a sequence of images that represent the scene. The apparatus uses only image information to determine scene illumination, or the presence of shadows, fog, smoke, or haze by comparing properties of detected objects, averaged over a finite video sequence, against properties of the reference image of the scene as that scene would appear without any objects present. Such a reference image is constructed in a manner similar to time-averaging successive camera images.

    Abstract translation: 一种用于通过分析表示场景的图像序列来确定场景中的某些环境条件的方法和装置。 该装置仅使用图像信息来确定场景照明,或者通过将有限视频序列上平均的检测对象的属性与该场景的参考图像的属性进行比较来确定场景照明,雾,烟雾或雾度的存在 出现没有任何物体存在。 这样的参考图像以与时间平均连续相机图像相似的方式构造。

    Image content classification methods, systems and computer programs
using texture patterns
    6.
    发明授权
    Image content classification methods, systems and computer programs using texture patterns 失效
    图像内容分类方法,系统和计算机程序使用纹理图案

    公开(公告)号:US5995651A

    公开(公告)日:1999-11-30

    申请号:US678157

    申请日:1996-07-11

    Abstract: Image content classification methods, systems and computer programs repeatedly scan an image having an array of image pixels, with at least one random neural network. Each scan corresponds to one of multiple texture patterns. A corresponding texture pattern is compared to each of multiple image portions for each of the multiple scans. A value is assigned to each image portion, corresponding to the texture pattern having the highest coincidence. An array of pixels corresponding to the assigned values for the image portions may then be displayed. Highly accurate results may be obtained, at high speed, without the need for lengthy expert analysis.

    Abstract translation: 图像内容分类方法,系统和计算机程序用至少一个随机神经网络重复扫描具有图像像素阵列的图像。 每个扫描对应于多个纹理图案之一。 将相应的纹理图案与多个扫描中的每一个的多个图像部分中的每一个进行比较。 分配给每个图像部分的值,对应于具有最高一致性的纹理图案。 然后可以显示与图像部分的分配值相对应的像素阵列。 可以高速获得高精度的结果,无需长时间的专家分析。

    Method and device for automatic image segmentation by textural analysis
    8.
    发明授权
    Method and device for automatic image segmentation by textural analysis 失效
    通过纹理分析自动图像分割的方法和装置

    公开(公告)号:US5321771A

    公开(公告)日:1994-06-14

    申请号:US982156

    申请日:1992-11-25

    Abstract: A device for automatic image segmentation according to the invention comprises a data processor associated with a network of automata organized in three levels; the inputs of each of the automata are weighted by adjustable coefficients; the number of automata of the first level is equal to the number of characteristic values computed from observation windows taken firstly in a set of examples of image zones having different textures. Learning by the network permits adjustment of the weighting coefficients of the automata of the network until all the examples of the same texture lead to the same configuration.

    Abstract translation: 根据本发明的用于自动图像分割的设备包括与组织在三个级别的自动机网络相关联的数据处理器; 每个自动机的输入由可调系数加权; 第一级的自动机的数量等于从具有不同纹理的图像区域的一组示例中首先获得的观察窗口计算出的特征值的数量。 通过网络学习允许调整网络自动机的加权系数,直到相同纹理的所有示例导致相同的配置。

    Optimum fast textural feature extractor
    9.
    发明授权
    Optimum fast textural feature extractor 失效
    最佳快速纹理特征提取器

    公开(公告)号:US4897881A

    公开(公告)日:1990-01-30

    申请号:US172229

    申请日:1988-03-23

    CPC classification number: G06T7/401 G06T2207/20081

    Abstract: The invention relates to a textural parameter extractor for classification or learning. Four (4) simple 2D optimum masks independent of image, are applied to four adjacent pixels in order to diagonize the associated covariance matrice. The first three (3) central moments, namely absolute deviation, standard deviation and skewness for each transformed image constitute a feature vector of twelve (12) components for classification purposes. Parallel and Sequential structures are also presented for fast textural feature extractor applications.

    Abstract translation: 本发明涉及一种用于分类或学习的纹理参数提取器。 四(4)个独立于图像的简单2D最佳掩模被应用于四个相邻像素,以便对相关协方差矩阵进行对角。 前三(3)个中心时刻,即每个变换图像的绝对偏差,标准偏差和偏度构成分类目的的十二(12)个分量的特征向量。 还提供了并行和顺序结构,用于快速纹理特征提取应用。

    Method and apparatus for assessing surface roughness
    10.
    发明授权
    Method and apparatus for assessing surface roughness 失效
    评估表面粗糙度的方法和装置

    公开(公告)号:US4878114A

    公开(公告)日:1989-10-31

    申请号:US192699

    申请日:1988-05-10

    CPC classification number: G06T7/401 G01B11/303 G06T2207/30108

    Abstract: A relatively low cost processor based optical system is used to carry out the method. An area of the surface whose roughness is to be assessed is illuminated by a light source, and a reflected light is directed to the lens of the video camera. The analog output of the video camera is digitized, and the digital signal is provided to a processor which performs an analysis to provide a parameter indicative of the roughness of the surface.

    Abstract translation: 使用相对低成本的基于处理器的光学系统来执行该方法。 要评估其粗糙度的表面的区域被光源照射,并且反射光被引导到摄像机的透镜。 摄像机的模拟输出被数字化,数字信号被提供给执行分析以提供表示表面粗糙度的参数的处理器。

Patent Agency Ranking