摘要:
Disclosed herein is a biomagnetic measurement apparatus capable of visualizing cardiac electrical current distributions with information on the cardiac morphology of a subject. A magnetic field component in the z direction, vertical to the chest surface of a subject, is measured from two directions, front and back of the chest, and then to calculate the current distributions in the two directions and the distributions of the amplitudes of those current distributions. A three-dimensional standard heart model is created from average data on the cardiac morphology obtained from plural healthy subjects. An optimal position of the model is determined using the coordinates of the sinus node and the coordinates of the left ventricle. Then, a weight coefficient is obtained by front and back current distributions and front and back the distributions of the amplitudes of those current distributions on a set boundary of the model.
摘要:
Disclosed herein is a biomagnetic measurement apparatus capable of visualizing cardiac electrical current distributions with information on the cardiac morphology of a subject. A magnetic field component in the z direction, vertical to the chest surface of a subject, is measured from two directions, front and back of the chest, and then to calculate the current distributions in the two directions and the distributions of the amplitudes of those current distributions. A three-dimensional standard heart model is created from average data on the cardiac morphology obtained from plural healthy subjects. An optimal position of the model is determined using the coordinates of the sinus node and the coordinates of the left ventricle. Then, a weight coefficient is obtained by front and back current distributions and front and back the distributions of the amplitudes of those current distributions on a set boundary of the model.
摘要:
A biomagnetic measurement technique which can obtain a potential waveform corresponding to a ventricular muscle cell action potential in a non-invasive manner. The biomagnetic measurement apparatus including an operating circuit for magnetometer. The output data of the operating circuit for the magnetometer is collected and a current vector at time t is calculated. Further, an absolute value Ixy of the current vector, a potential waveform V (t) in time corresponding to depolarization of a heart from the absolute value of the current vector, and a potential waveform V (t) in a refractory period of the heart to a period corresponding to repolarization from the absolute value of the current vector are calculated.
摘要:
A biomagnetic field measuring apparatus for performing (1) processes for removing a magnetic field waveform generated by a maternal heart from a waveform of a biomagnetic field measured, (2) processes for obtaining a template waveform of a magnetic field waveform generated by the fetal heart from a waveform, from which the magnetic field waveform generated by the maternal heart has been removed, (3) processes for obtaining a waveform of a cross correlation coefficient between the waveform, from which the magnetic field waveform generated by the mother's hears was removed, and the template waveform, and (4) a process for detecting peaks from a waveform of the cross correlation coefficient, and displaying times of appearance of the detected peaks on a display unit.
摘要:
A movement analysis display apparatus includes a analyzing unit for analyzing waveform data of a time series which is acquired from a movement sensor, and a display unit for displaying an analysis result that is analyzed by the analyzing unit. The analyzing unit includes a movement waveform generating section for generating a movement waveform from the waveform data, an energy balance value calculating means for calculating a movement energy ratio in opposed movement directions in a velocity waveform, an envelope curve generating section for generating an envelope curve at a given time width in a distance waveform, and a time integration curve analyzing section for integrating a movement waveform with respect to time.
摘要:
A CAM (current arrow map) 71 and another CAM 72 are obtained from magnetocardiogram waveforms measured from both front and back sides of a subject using data at a point of time of an R-wave peak, then the coordinates of the CAM 72 are inverted in both x and y axis directions to obtain a CAM 73. The coordinates of each of the CAMs 71 and 73 are converted to polar coordinates to obtain CAMs 74 and 75 at both front and back sides of the subject. After that, the CAM 74 is adjusted to the CAM 76 in scale to obtain a CAM 76 , and CAMs 74 and 76 are combined. Then, the CAM data at measuring points on each measuring-points-missing radius vector is inserted through an arithmetic processing by interpolation so that CAM data at every measuring point on a planispheric chart 77 are connected to each another consecutively.
摘要:
In a moving body inspection apparatus, sequential waveform data obtained from a movement sensor is analyzed, wherein a plurality of waveforms from the waveform data is generated; phases compared among a plurality of movement waveforms; and a result of comparing phases are displayed. A partial waveform in a frequency analysis time interval having a predetermined length is extracted from a plurality of the movement waveforms. A frequency analysis operation is performed for the extracted partial waveforms to calculate phases at maximum power frequencies in the frequency analysis time interval; a phase difference is calculated among a plurality of the movement waveforms. The peaks may be detected in a plurality of movement waveforms. Peak intervals are calculated as time intervals between adjoining peaks. The peaks among the movement waveforms are matched. Phase differences are calculated among a plurality of the movement waveforms.
摘要:
A living body inspection apparatus which quantitatively evaluates timings of movements (bending and stretching) of fingers. The apparatus includes: a movement sensor including a transmitter coil for generating a magnetic field and a plurality of receiver coils for receiving the generated magnetic field from the transmitter coil; analyzing means which analyzes time-series waveform data acquired from the movement sensor; and display means which displays a result of analysis made by the analyzing means. For comparison of waveform data, the analyzing means includes distance waveform generating means for generating distance waveforms corresponding to the waveform data, and standard point generating means for generating standard points based on standard distances in the distance waveforms.
摘要:
Living body inspection apparatus which concurrently carries out proper measurement of movement of a living body and measurement of a magnetic field emanating from the living body. It includes a movement sensor which includes magnetic field generating means for generating a magnetic field and magnetic field receiving means attached to a living body for receiving the magnetic field and measures movement of the living body based on the magnetic field emitted from the magnetic field generating means and received by the magnetic field receiving means. It also includes: a SQUID magnetometer which receives a biomagnetic field emanating from the living body; analyzing means which analyzes measurement data obtained by the movement sensor and the SQUID magnetometer; and display means which outputs a result of analysis made by the analyzing means. The magnetic field generating means is fixed in a prescribed position relative to the SQUID magnetometer.
摘要:
Disclosed herewith is a biomagnetic measurement apparatus capable of displaying electrical excitement as a planispheric map. (First processing 70) A CAM (current arrow map) 71 and another CAM 72 are obtained from magnetocardiogram waveforms measured from both front and back sides of a subject using the data at a point of time of an R-wave peak, then the coordinates of the CAM 72 are inverted in both x and y axis directions to obtain a CAM 73. (Second processing 78) The coordinates of each of the CAMs 71 and 73 are converted to polar coordinates to obtain CAMs 74 and 75 at both front and back sides of the subject. After that, the CAM 74 is adjusted to the CAM 76 in scale to obtain a CAM 76. (Third processing 79) The CAMs 74 and 76 are combined. Then, the CAM data at measuring points on each measuring-points-missing radius vector is inserted through an arithmetic processing by interpolation so that CAM data at every measuring point on a planispheric chart 77 is connected to each another consecutively and smoothly. This is why CAMs at both front and back sides of the subject are displayed on one planispheric chart.