Abstract:
A CMOS dynamic logic structure has a plurality of logic gates, and the logic gates includes type-1 and type-3 logic gates alternately connected with each other. Each logic gate is separated into a function unit and a driver unit. The function unit has a PMOS precharge transistor, and a logic tree block stacked with the PMOS precharge transistor. The driver unit has an NMOS evaluation transistor, and the NMOS evaluation transistor and the PMOS precharge transistor of the previous-stage logic gate is controlled by an identical clock in order not to be turned on simultaneously.
Abstract:
A driving circuit comprising a control unit, a current control unit, a pulse width modulation control unit and a current driving unit is described. The control unit provides a first control signal and a second control signal. The current control unit is connected to the control unit, and converts a reference current into a plurality of current setting signals based on a data signal and the first control signal. The pulse width modulation control unit is connected to the control unit and outputs a pulse signal based on the data signal and the second control signal. The current driving unit is connected to the pulse width modulation control unit and drives the light emitting diode based on a driving current, wherein the control unit generates a continuous conduction time in a predetermined operation period based on the pulse signal and the current setting signals.
Abstract:
An optical mouse chip with silicon retina structure comprises an image sensor array, an accumulator and a comparing/selecting unit. The image sensor array senses a direction parameter of an image along each axis. The accumulator sums the direction parameters of the image along different axes. The comparing/selecting unit selects a largest one from the sum of direction parameters of the image along different axes to determine a moving direction of the image.
Abstract:
An external adapter circuitry is plugged into the printer port of a host computer to provide the utility of computer telephony for the host computer. The circuitry is housed in a compact box which is about the size of a common parallel port connector. The circuitry consists of a telephone line interface for receiving and sending signals from/to the telephone line; a printer port interface for sending data to and receiving data from the host computer; a couple of registers for latching signal-in and signal-out; a A/D converter for converting analog signals to digital signals; and a D/A converter for converting digitized signals to analog signals. More specially, the electricity of the entire circuitry is supplied from a signal-to-power converter which obtains voltages from the printer port. Therefore, the external adapter circuitry does not need a power line for external power supply.
Abstract:
An electrostatic discharge (ESD) circuit for protecting a semiconductor integrated circuit (IC) device is disclosed. One ESD circuit is located between each I/O buffering pad that connects to one lead pin and the internal circuitry of IC. The ESD circuit is connected to both power terminals. The ESD circuit comprises first and second low-voltage-trigger SCRs (LVTSCRs), each having an anode, a cathode, an anode gate and a cathode gate. The anode and anode gate of the first SCR are connected to a first power terminal, the cathode of the first SCR is connected to its I/O buffering pad, and the cathode gate of the first SCR is connected to the second power terminal. The ESD circuit further comprises a PMOS transistor having drain, source, gate, and bulk terminals. The PMOS transistor's gate, source and bulk terminals are connected to the first power terminal, the PMOS transistor drain terminal is connected to the cathode gate of the first SCR. The cathode and cathode gate of the second SCR are connected to the second power terminals. The anode of the second SCR is connected to its associated I/O buffering pads. The anode gate of the second SCR is connected to the first power terminal. The ESD circuit also comprises an NMOS transistor having drain, source, gate, and bulk terminals. The NMOS transistor's gate, source and bulk terminals are connected to the second power terminals. The NMOS transistor's drain terminal is connected to the anode gate of the second SCR.
Abstract:
A circuit for protecting a CMOS chip against damage from electrostatic discharges (ESD) has four SCRs connected between the line to be protected and the two power supply terminals, V.sub.DD and V.sub.SS. The SCRs are poled to conduct ESD current of either polarity to each power supply terminal. The bipolar transistors for the SCRs and the associated components are arranged in the chip in an advantageous way that reduces the input/output parasitic capacitance and improves the protection capability of this proposed circuit with a low ESD trigger-on voltage.
Abstract:
A Light Emitting Diode (LED) packaging structure comprises an LED die, a package body, and an optical element. The package body wraps the LED die, and the optical element is disposed on the package body. A light beam emitted by the LED die passes through the optical element and is split into a plurality of sub-light beams, and each of sub-light beams is individually projected onto an image plane corresponding to the optical element. Therefore, the LED packaging structure is applied to an LED stereoscopic display device, so that left eye and right eye of a viewer may respectively receive light beams emitted by different LED dies, so as to view a stereoscopic image, thereby solving a problem of a conventional stereoscopic display device that the stereoscopic image may be viewed in only a single viewable area.
Abstract:
A voltage-controlled oscillator comprises a variable inductor, a negative impedance circuit, an operating voltage source and a ground point. The variable inductor comprises a transformer and a transistor switch, the transformer comprising a primary side coil and a secondary side coil, the primary side coil comprising a first coil and a second coil, and the secondary side coil comprising a third coil and a fourth coil. The transistor switch is connected in parallel with the primary side coil to adjust an inductance value of the variable inductor based on a gate voltage. The negative impedance circuit is connected in parallel with the secondary side coil to compensate the power consumption of the voltage-controlled oscillator during oscillation. The operating voltage source is electrically connected between the third coil and the fourth coil, and the ground point is electrically connected between the first coil and the second coil.
Abstract:
A substrate-triggering ESD protection circuit is provided for use on a deep-submicron integrated circuit for ESD protection of the integrated circuit. The ESD protection circuit is incorporated between an input end and the internal circuit of the integrated circuit formed on a substrate. The ESD protection circuit utilizes a featured substrate-triggering operation to trigger the ESD-protection transistors formed in N-wells of the substrate into conducting state so as to bypass the ESD current to the ground. The ESD protection circuit allows a simplified semiconductor structure to fabricate, while nonetheless providing an increased level of ESD protection capability for the deep-submicron integrated circuit.
Abstract:
The present invention is related to a capacitor-couple electrostatic discharge (ESD) protection circuit for protecting an internal circuit and/or an output buffer of an IC from being damaged by an ESD current. The capacitor-couple ESD protection circuit according to the present invention includes an ESD bypass device for bypassing the ESD current, a capacitor-couple circuit for coupling a portion of voltage to the ESD bypass device, and a potential leveling device for keeping an ESD voltage transmitted for the internal circuit at a low potential level. By using the present ESD protection circuit, the snapback breakdown voltage can be lowered to protect the very thin gate oxide of the internal circuit especially in the submicron CMOS technologies.