Abstract:
A semiconductor memory device comprises a memory cell array comprising memory cells of a first type. The memory cell array performs write and read operations in response to signals designed for the operation of a memory cell array comprising memory cells of a type other than the first type.
Abstract:
A PRAM includes a memory cell array of phase change memory cells, and a write circuit receiving an externally provided first voltage and supplying a write pulse for writing data to the memory cells in a normal operation mode. The write circuit also receives an externally provided second voltage higher than the first voltage and supplies a firing pulse to at least one firing-failed phase change memory cell.
Abstract:
In a phase change random access memory (PRAM) device, data is programmed in selected memory cells using a plurality of program loops. In each program loop, division program operations for cell groups including the selected memory cells are performed in consecutive timeslots.
Abstract:
The present invention relates to an acryl-silicon rubber complex polymer and a method for the preparation and use of the same. More precisely, the present invention relates to an acryl-silicon rubber complex polymer which has a seed-core-shell structure wherein the vinyl monomer and hydrophilic monomer are cross-linked on the seed; the acryl-silicon complex IPN core having an IPN (interpenetrating network) structure in which silicon rubber particles are dispersed by being cross-linked to acryl rubber, in a continuous phase, is formed on the seed; and a shell prepared by graft-polymerization of C1˜C4 alkyl methacrylate to the acryl-silicon complex IPN core is formed on the core, and a method of preparation and use of the same. The acryl-silicon rubber complex polymer of the present invention has excellent impact resistance, weatherability and gloss, so that it can be effectively used as an impact modifier for vinyl chloride resin. The acryl-silicon complex IPN core has an IPN (interpenetrating network) structure formed by radical polymerization of acryl monomer and hydrosilyation of silicon rubber.
Abstract:
A method of operating a phase change random access memory (PRAM) device comprises performing a program operation to store data in selected PRAM cells of the device, wherein the program operation comprises a plurality of sequential program loops. The method further comprises suspending the program operation in the middle of the program operation, and after suspending the program operation, resuming the program operation in response to a resume command.
Abstract:
A method of operating a phase change random access memory (PRAM) device includes performing a program operation to store data in selected PRAM cells of the device, wherein the program operation comprises a plurality of sequential program loops. The method further comprises suspending the program operation in the middle of the program operation, and after suspending the program operation, resuming the program operation in response to a resume command.
Abstract:
A method of operating a phase change random access memory (PRAM) device comprises performing a program operation to store data in selected PRAM cells of the device, wherein the program operation comprises a plurality of sequential program loops. The method further comprises suspending the program operation in the middle of the program operation, and after suspending the program operation, resuming the program operation in response to a resume command.
Abstract:
A method of operating a phase change random access memory (PRAM) device includes performing a program operation to store data in selected PRAM cells of the device, wherein the program operation comprises a plurality of sequential program loops. The method further comprises suspending the program operation in the middle of the program operation, and after suspending the program operation, resuming the program operation in response to a resume command.
Abstract:
In a nonvolatile memory device, a program operation is performed on a plurality of nonvolatile memory cells by programming data having a first logic state in a first group among a plurality of selected memory cells selected from the plurality of nonvolatile memory cells during a first program interval of the program operation, and thereafter, programming data having a second logic state different from the first logic state in a second group among the selected memory cells during a second program interval of the program operation after the first program interval.
Abstract:
In a nonvolatile memory device, a program operation is performed on a plurality of nonvolatile memory cells by programming data having a first logic state in a first group among a plurality of selected memory cells selected from the plurality of nonvolatile memory cells during a first program interval of the program operation, and thereafter, programming data having a second logic state different from the first logic state in a second group among the selected memory cells during a second program interval of the program operation after the first program interval.