摘要:
A polarization controller is configured to comprise polarization state monitoring section for monitoring polarization states of input light and output light of a variable polarization light element; and a control section, when the positions on a Poincare sphere expressing each of the polarization states monitored by the polarization state monitoring section are at the positions being symmetric or approximately symmetric for the equator of the Poincare sphere, for rotating the Poincare sphere by π by using the earth axis of the Poincare sphere as a rotation axis by changing the azimuth of the optical axis of the variable polarization light element, and also for inverting the changing direction of the phase shift amount. By this, arbitrary and endless control of polarization light can be realized by a phase shift amount being less than the wavelength λ of the input light.
摘要:
An optical transmission device improved in quality and reliability of OADM function and permitting configuration of highly-flexible, economical OADM networks. A wavelength tunable filter variably selects a wavelength according to a control frequency. A filter controller applies the control frequency to the filter while scanning wavelength over an entire signal bandwidth, to detect, from a reference wavelength monitor signal supplied thereto, a reference control frequency which permits the filter to select a reference wavelength and according to which wavelength is matched. On receiving a wavelength selection request, the controller obtains a target control frequency from the reference control frequency and the position of a target wavelength relative to the reference wavelength, and applies the obtained frequency to the filter. A reference wavelength filter transmits the reference wavelength therethrough. A light-receiving element monitors the transmitted reference wavelength to generate the monitor signal.
摘要:
An optical transmission device improved in quality and reliability of OADM function and permitting configuration of highly-flexible, economical OADM networks. A wavelength tunable filter variably selects a wavelength according to a control frequency. A filter controller applies the control frequency to the filter while scanning wavelength over an entire signal bandwidth, to detect, from a reference wavelength monitor signal supplied thereto, a reference control frequency which permits the filter to select a reference wavelength and according to which wavelength is matched. On receiving a wavelength selection request, the controller obtains a target control frequency from the reference control frequency and the position of a target wavelength relative to the reference wavelength, and applies the obtained frequency to the filter. A reference wavelength filter transmits the reference wavelength therethrough. A light-receiving element monitors the transmitted reference wavelength to generate the monitor signal.
摘要:
A polarization controller is configured to comprise polarization state monitoring section for monitoring polarization states of input light and output light of a variable polarization light element; and a control section, when the positions on a Poincare sphere expressing each of the polarization states monitored by the polarization state monitoring section are at the positions being symmetric or approximately symmetric for the equator of the Poincare sphere, for rotating the Poincare sphere by π by using the earth axis of the Poincare sphere as a rotation axis by changing the azimuth of the optical axis of the variable polarization light element, and also for inverting the changing direction of the phase shift amount. By this, arbitrary and endless control of polarization light can be realized by a phase shift amount being less than the wavelength λ of the input light.
摘要:
An optical amplifier includes a semiconductor optical amplifier, a power monitor configured to monitor an optical power of out-of-signal-band noise output from the semiconductor optical amplifier, and a corrector configured to correct a relationship between a driving current for the semiconductor optical amplifier and a noise optical power based on the out-of-signal-band noise optical power monitored by the first power monitor.
摘要:
An optical amplification apparatus includes a front-stage semiconductor optical amplifier which amplifies an input light and a rear-stage semiconductor optical amplifier which amplifies an amplified light outputted from the front-stage semiconductor optical amplifier. The front-stage semiconductor optical amplifier exercises auto level control of an output light by exercising variable control of driving current which flows according to applied voltage higher than light emitting threshold voltage of an internal optical amplification element. The rear-stage semiconductor optical amplifier performs gate switching of a transmitted light by exercising switching control of driving current. By doing so, distortion of a waveform is controlled and optical communication quality can be improved.
摘要:
An optical amplification apparatus includes a front-stage semiconductor optical amplifier which amplifies an input light and a rear-stage semiconductor optical amplifier which amplifies an amplified light outputted from the front-stage semiconductor optical amplifier. The front-stage semiconductor optical amplifier exercises auto level control of an output light by exercising variable control of driving current which flows according to applied voltage higher than light emitting threshold voltage of an internal optical amplification element. The rear-stage semiconductor optical amplifier performs gate switching of a transmitted light by exercising switching control of driving current. By doing so, distortion of a waveform is controlled and optical communication quality can be improved.
摘要:
Optical add/drop nodes are used in a network having a pair of optical transmission paths for transmitting optical signals in opposite directions to each other. Each add/drop node comprises a variable split ratio optical coupler for splitting an optical signal output from a transmitter. The split ratio of the variable split ratio optical coupler is set such that the optical power levels of the signals added through the respective optical add/drop nodes are equal to one another respectively on the pair of optical transmission paths.
摘要:
A relay apparatus including: a first interface 11 that branches an optical signal that is input in a first direction from one side of the optical transmission line, and directs the optical signal to a first path and a second path, the first path being a processing path of an optical signal having a first transmission speed, the second path being a processing path of an optical signal having a second transmission speed that is different from the first transmission speed; a processing section 12 that executes processing on an optical signal propagating through each of the paths in accordance with a corresponding transmission speed; and a second interface 13 that binds the first path and the second path of the optical signal on which the processing is executed by the processing section, by means of wavelength multiplexing and directs to the other end of the optical transmission line.
摘要:
An optical transmission system capable of time difference correction without increasing guard times, thereby improving optical packet transmission efficiency. An optical switching processor sets identical switching timing for all input ports thereof such that optical signals input from the input ports are switched at the same timing. During initialization, a time difference corrector transmits an optical dummy packet to an optical switch node, and detects synchroneity of the optical dummy packet returned thereto after being switched by the optical switch node. If synchronization error is detected, the time difference corrector adjusts the output timing of the optical dummy packet so that the timing of arrival of the optical dummy packet at the optical switching processor may coincide with the switching timing of the optical switching processor, to thereby correct the time difference between the switching timing and the arrival timing.