Abstract:
Provided are a composition for a gel polymer electrolyte including i) an electrolyte solution solvent, ii) an ionizable lithium salt, iii) a polymerization initiator, and iv) a monomer having a functional group bondable to metal ions, and a lithium secondary battery including the composition for a gel polymer electrolyte.In a case where the composition for a gel polymer electrolyte of the present invention is used in a lithium secondary battery, since the movement of metal ions dissolved from a cathode to an anode may be prevented or the precipitation of metal on the anode may be reduced, the lifetime of the battery may not only be improved but capacity characteristics of the battery may also be excellent even in the case in which the battery is charged at a high voltage as well as normal voltage
Abstract:
Provided are a lithium secondary battery including a cathode, an anode, a separator, and a gel polymer electrolyte, wherein the gel polymer electrolyte includes an acrylate-based polymer and a charge voltage of the battery is in a range of 4.3 V to 5.0 V, and a method of preparing the lithium secondary battery. A high-voltage lithium secondary battery of the present invention has excellent capacity characteristics at a high voltage of 4.3 V or more.
Abstract:
Provided are a composition for a gel polymer electrolyte including i) an electrolyte solution solvent, ii) an ionizable lithium salt, iii) a polymerization initiator, and iv) a monomer having a functional group bondable to metal ions, and a lithium secondary battery including the composition for a gel polymer electrolyte.In a case where the composition for a gel polymer electrolyte of the present invention is used in a lithium secondary battery, since the movement of metal ions dissolved from a cathode to an anode may be prevented or the precipitation of metal on the anode may be reduced, the lifetime of the battery may not only be improved but capacity characteristics of the battery may also be excellent even in the case in which the battery is charged at a high voltage as well as normal voltage.
Abstract:
Provided are a lithium secondary battery including a cathode, an anode, a separator, and a gel polymer electrolyte, wherein i) the anode includes a silicon (Si)-based anode active material, ii) the gel polymer electrolyte is formed by polymerizing a composition that includes a monomer having a functional group bondable to metal ions, and iii) a charge voltage of the battery is in a range of 3.0 V to 5.0 V.Since the lithium secondary battery of the present invention may prevent the movement of metal ions dissolved from a cathode to an anode or reduce the precipitation of metal on the anode, the lifetime of the battery may not only be improved but capacity characteristics of the battery may also be excellent even in the case in which the battery is charged at a high voltage as well as normal voltage.
Abstract:
Provided are a lithium secondary battery including a cathode, an anode, a separator, and a gel polymer electrolyte, wherein the gel polymer electrolyte includes an acrylate-based polymer and a charge voltage of the battery is in a range of 4.3 V to 5.0 V, and a method of preparing the lithium secondary battery. A high-voltage lithium secondary battery of the present invention has excellent capacity characteristics at a high voltage of 4.3 V or more.
Abstract:
Disclosed is an organic/inorganic composite porous film comprising: (a) inorganic particles; and (b) a binder polymer coating layer formed partially or totally on surfaces of the inorganic particles, wherein the inorganic particles are interconnected among themselves and are fixed by the binder polymer, and interstitial volumes among the inorganic particles form a micropore structure. A method for manufacturing the same film and an electrochemical device including the same film are also disclosed. An electrochemical device comprising the organic/inorganic composite porous film shows improved safety and quality.
Abstract:
Provided are a lithium secondary battery including a cathode, an anode, a separator, and a gel polymer electrolyte, wherein i) the anode includes a silicon (Si)-based anode active material, ii) the gel polymer electrolyte is formed by polymerizing a composition that includes a monomer having a functional group bondable to metal ions, and iii) a charge voltage of the battery is in a range of 3.0 V to 5.0 V.Since the lithium secondary battery of the present invention may prevent the movement of metal ions dissolved from a cathode to an anode or reduce the precipitation of metal on the anode, the lifetime of the battery may not only be improved but capacity characteristics of the battery may also be excellent even in the case in which the battery is charged at a high voltage as well as normal voltage.