Abstract:
Disclosed are an electrode assembly for sulfur-lithium ion batteries that uses a lithium-containing compound as a cathode active material and a sulfur-containing compound as an anode active material and a sulfur-lithium ion battery including the same.
Abstract:
Disclosed are an electrode assembly for sulfur-lithium ion batteries that uses a lithium-containing compound as a cathode active material and a sulfur-containing compound as an anode active material and a sulfur-lithium ion battery including the same.
Abstract:
The present invention provides a battery management apparatus and method which connect a plurality of batteries having different energy densities to each other and control power supplied through the plurality of batteries to control the driving of the driving body.
Abstract:
The present specification relates to an anode, a lithium secondary battery including the same, a battery module including the lithium secondary battery, and a method for manufacturing an anode.
Abstract:
The present application relates to a cathode for a lithium-sulfur battery and a method of preparing the same. More specifically, the cathode for a lithium-sulfur battery according to an exemplary embodiment of the present application includes: a cathode active part including a sulfur-carbon composite; and a cathode coating layer including an amphiphilic polymer provided on at least one portion of a surface of the cathode active part and including a hydrophilic portion and a hydrophobic portion.
Abstract:
The present invention provides a battery management apparatus and method which connect a plurality of batteries having different energy densities to each other and control power supplied through the plurality of batteries to control the driving of the driving body.
Abstract:
A method for enhancing a lifetime of a lithium secondary battery including manufacturing a battery by injecting an electrolyte liquid to an electrode assembly-embedded battery; and charging and discharging the manufactured battery; and additionally injecting an electrolyte liquid earlier than half a cycle point with respect to the number of charge and discharge cycles reaching discharge capacity of 80% compared to initial capacity is provided.
Abstract:
The present application relates to a cathode for a lithium-sulfur battery and a method of preparing the same. More specifically, the cathode for a lithium-sulfur battery according to an exemplary embodiment of the present application includes: a cathode active part including a sulfur-carbon composite; and a cathode coating layer including an amphiphilic polymer provided on at least one portion of a surface of the cathode active part and including a hydrophilic portion and a hydrophobic portion.
Abstract:
The present invention relates to a cathode active material for a lithium-sulfur battery and a method of preparing the same, and more particularly, to a cathode active material for a lithium-sulfur battery comprising: an amphiphilic polymer comprising hydrophilicity parts and hydrophobicity parts; and a sulfur-carbon composite, and a method of preparing the same. When a lithium-sulfur battery is prepared using the cathode active material, there is an effect which may enhance the electric conductivity in an electrode, cycle characteristics and capacity.