Abstract:
The present invention relates to a polymer-sulfur copolymer, a preparation method thereof, and a lithium-sulfur battery including the same.In the case of the polymer-sulfur copolymer according to the present invention, since the carrier is polymerized, there is no possibility that the carrier is eluted, and since the sulfur is covalently bonded to the polymer and uniformly distributed in a certain size in the copolymer, when used as a positive electrode active material for the lithium-sulfur battery, the problem of elution of the polysulfide can be improved. In addition, the polymer-sulfur copolymer according to the present invention has a high sulfur impregnation amount, thereby making it possible to realize a high capacity battery.
Abstract:
Disclosed are an electrode assembly for sulfur-lithium ion batteries that uses a lithium-containing compound as a cathode active material and a sulfur-containing compound as an anode active material and a sulfur-lithium ion battery including the same.
Abstract:
The present invention relates to a multi-layer structured lithium metal electrode and a method for manufacturing the same and, specifically, to a multi-layer structured lithium metal electrode comprising: a buffer layer of lithium nitride (Li3N) formed on a lithium metal plate; and a protective layer of LiBON formed on the buffer layer, and to a method for manufacturing a multi-layer structured lithium metal electrode by continuously forming a lithium nitride buffer layer and a LiBON protective layer on a lithium metal plate through continuous reactive sputtering multi-layer structured lithium metal electrode multi-layer structured lithium metal electrode lithium metal plate multi-layer structured lithium metal electrode lithium metal plate. The multi-layer structured lithium metal electrode of the present invention can protect the reactivity of the lithium metal from moisture or an environment within a battery, and prevent the formation of dendrites, by forming the protective layer.
Abstract:
The present disclosure relates to a lithium sulfur battery, and the battery includes a cathode and an anode arranged facing each other; a separator interposed between the cathode and the anode; and an electrolyte, and further includes at least one or more membranes of a lithium ion conductive polymer membrane positioned between the cathode and the separator and having a sulfonic acid group (—SO3H), and a metal oxide membrane positioned between the anode and the separator, and therefore, an electrode active material loss is reduced, an improved lifespan characteristic is obtained by blocking the spread of lithium polysulfide to the anode, and in addition thereto, enhanced safety is obtained by suppressing a dendrite growth in the anode.
Abstract:
A film-shaped coating layer including at least one lithium ion conductive compound having a band gap of 5.5 eV to 10 eV formed on the surface of a core including a lithium composite metal oxide to a thickness at which dielectric breakdown does not occur according to types of the lithium ion conductive compound and the lithium composite metal oxide under charge and discharge conditions. Thereby, an oxidation/reduction reaction is suppressed by blocking the movement of electrons at an interface between an active material and an electrolyte solution by the coating layer which surrounds the surface of particles and has lithium ion conductivity, and, as a result, a positive electrode active material for a secondary battery, which may improve energy density of an electrode and life characteristics of a battery, and a secondary battery including the same are provided.
Abstract:
Disclosed is a battery module including a plurality of plate-shaped battery cells which are sequentially stacked, wherein the battery module is configured to have a structure in which two or more hexahedral cell units are connected to each other in series in a state in which the hexahedral cell units are stacked, each of the cell units is configured to have a structure in which two or more battery cells are connected to each other in series in a state in which the battery cells are in tight contact with each other, and electrode terminals (outermost electrode terminals) of outmost battery cells of the cell units are connected to external input and output terminals of the battery module, the outermost electrode terminals having a larger vertical sectional area than electrode terminals of the other battery cells such that the outermost electrode terminals are prevented from being broken by external force.
Abstract:
Disclosed herein is a battery pack configured such that battery modules, each of which includes a plurality of battery cells or unit modules connected to each other in series, are connected to each other in series in a state in which the battery modules are in tight contact with each other or stacked adjacent to each other, the battery pack including a fuse connected in series in an electrical connection circuit between the battery modules and a circuit breaker mounted at an outside of at least one of the battery modules to perform electric conduction when the battery cells swell, the circuit breaker being electrically connected to the electrical connection circuit to break the fuse when electric conduction is performed due to swelling of the battery cells.
Abstract:
Disclosed are an electrode assembly for sulfur-lithium ion batteries that uses a lithium-containing compound as a cathode active material and a sulfur-containing compound as an anode active material and a sulfur-lithium ion battery including the same.
Abstract:
Disclosed herein is a battery pack, temperature of which is controllable, including at least one battery module including a plurality of battery cells or unit modules (‘unit cells’) which can be charged and discharged, a fluid channel formed such that a fluid to cool or heat the battery module passes through the battery module, a flow change unit located on the fluid channel to change a flow direction of the fluid based on a temperature state of the battery module, and an operation controller to control an operation of the flow change unit based on information regarding the temperature of the battery module.
Abstract:
Disclosed herein is a safety device mounted at one side of a battery pack including two or more battery cells or at least one battery module such that the safety device is first short-circuited when a needle type object penetrates the battery pack to secure safety of the battery pack, the safety device including a pair of conductive sheets spaced apart from each other, an electrically insulative housing to surround outsides of the conductive sheets excluding fronts of the conductive sheets in a state in which the conductive sheets are inserted and mounted in the housing, a sealing member to cover the fronts of the conductive sheets, and a connection member to connect the conductive sheets to a cathode and an anode of one of battery cells constituting the battery module.