Abstract:
The present disclosure relates to a positive electrode material which includes a first positive electrode active material, and a second positive electrode active material in the form of a single particle, wherein an amount of lithium impurities on a surface of the second positive electrode active material is 0.14 wt % or less based on a total weight of the second positive electrode active material, and at least one of nickel, cobalt, and manganese included in the second positive electrode active material has a concentration gradient gradually changing from the center of the particle to a surface thereof, a method of preparing the positive electrode material, and a positive electrode for a lithium secondary battery and a lithium secondary battery which include the positive electrode material.
Abstract:
Provided are positive electrode active material particles for a secondary battery which include a lithium cobalt oxide, a coating layer including element A and formed on a surface of particles of the lithium cobalt oxide, and a dopant containing element B which is substituted in the lithium cobalt oxide, wherein the element A and the element B are each independently at least one selected from the group consisting of aluminum (Al), titanium (Ti), magnesium (Mg), zirconium (Zr), barium (Ba), calcium (Ca), tantalum (Ta), niobium (Nb), and molybdenum (Mo), and a molar ratio of the element A in the coating layer:the element B of the dopant is greater than 1:1 to 10:1.
Abstract:
A positive electrode active material for a secondary battery including a core part and a shell part formed around the core part is provided. Here, the core part and the shell part include a lithium composite transition metal oxide including Ni and Co, and at least one or more selected from the group consisting of Mn and Al, and a ratio of the diameter of the core part to the total diameter of a particle of the positive electrode active material is 0.5 to 0.85, and the shell part has a concentration gradient such that a Ni concentration at the start point of the shell part near the core part is 30 mol % or higher than that at the end point of the shell part near the particle surface.
Abstract:
A method for producing a positive electrode active material, a positive electrode active material produced thereby, and a positive electrode and a lithium secondary battery including the same are provided. The method includes preparing a nickel-manganese-aluminum precursor having an atomic fraction of nickel of 90 atm % or greater in all transition metals, and mixing the nickel-manganese-aluminum precursor, a cobalt raw material, and a lithium raw material and heat treating the mixture.
Abstract:
Provided is a positive electrode active material particle including a core containing lithium cobalt oxide represented by the following Chemical Formula 1; and a coating layer containing boron (B) and fluorine (F), which is coated on the surface of the core: Li1+xCo1−xO2 (1)
Abstract:
A negative active material for rechargeable lithium secondary batteries, a method of preparing the same, and a rechargeable lithium secondary battery including the same are disclosed. The negative active material includes a core including a lithium titanium oxide of Formula 1, and a coating layer positioned on a surface of the core and including an acid anhydride physisorbed onto the core, and thus can be useful in inhibiting battery side reactions and gas generation and improving battery performance since moisture formed during a redox reaction is effectively absorbed into a surface of the negative active material. LixTiyO4 [Formula 1] In Formula 1, x and y are as defined in the detailed description.
Abstract:
Provided are lithium transition metal composite particle including a lithium transition metal oxide particle, a metal-doped layer formed by doping the lithium transition metal oxide particle, and LiF formed on the lithium transition metal oxide particle including the metal-doped layer, a preparation method thereof, and a lithium secondary battery including the lithium transition metal composite particles.
Abstract:
Provided are a cathode active material including lithium transition metal phosphate particles, wherein the lithium transition metal phosphate particles include a first secondary particle formed by agglomeration of two or more first primary particles, and a second secondary particle formed by agglomeration of two or more second primary particles in the first secondary particle, and a method of preparing the same. Since the cathode active material according to an embodiment of the present invention may include first primary particles and second primary particles having different average particle diameters, the exfoliation of the cathode active material from a cathode collector may be minimized and performance characteristics, such as high output characteristics and an increase in available capacity, of a secondary battery may be further improved. In addition, since the first secondary particles are porous, the secondary particles are collapsed and fractured due to rolling when used in a cathode.
Abstract:
A positive electrode material and a method of producing thereof is provided. The positive electrode material having a bimodal particle diameter distribution and including large-diameter particles and small-diameter particles, wherein the small-diameter particle is a lithium composite transition metal oxide in the form of a single particle and containing a rock salt phase formed on a surface portion thereof.
Abstract:
A positive electrode material and a positive electrode and a lithium secondary battery including the same are provided. The positive electrode material having a bimodal particle size distribution which includes large-diameter particles and small-diameter particles having different average particle diameters (D50), wherein the large-diameter particles are lithium composite transition metal oxide having a nickel content of 80 atm % or more in all transition metals thereof, and the small-diameter particles are a lithium composite transition metal oxide including nickel, cobalt, and aluminum, having a nickel content of 80 atm % to 85 atm % in all transition metals, and having an atomic ratio of the cobalt to the aluminum (Co/Al) of 1.5 to 5.