摘要:
The present invention relates to a positive electrode active material for a lithium secondary battery, and a lithium secondary battery including the same, and the positive electrode active material includes lithium cobalt oxide particles. The lithium cobalt oxide particles include lithium cobalt oxide having a Li/Co molar ratio of less than 1 in the particles. Good rate property and life property may be obtained without worrying on the deterioration of initial capacity property.
摘要:
The present invention provides a positive electrode active material for a secondary battery, the positive electrode active material including a lithium composite metal oxide particle represented by Formula 1 below, and a secondary battery including the same. LiaNi1−x−yCoxM1yM2zM3wO2 [Formula 1] In Formula 1,M1 is a metal element whose surface energy (ΔEsurf) calculated by Equation 1 below is −0.5 eV or higher, M2 is a metal element whose surface energy (ΔEsurf) calculated by Equation 1 below is −1.5 eV or higher and less than −0.5 eV, M3 is a metal element whose surface energy (ΔEsurf) calculated by Equation 1 below is less than −1.5 eV, and 1.0≤a≤1.5, 0
摘要:
In the present invention is provided a positive electrode active material for a secondary battery, wherein the positive electrode active material includes a core including a lithium composite metal oxide, and a surface treatment layer positioned on the surface of the core, and the surface treatment layer includes a porous coordination polymer in which a central metal ion is coordinate-bonded with an organic ligand such that high electrode density may be exhibited when an electrode is manufactured, and consequently, battery properties may be significantly enhanced. Also provided are a positive electrode, which is for a secondary battery and includes the positive electrode active material, and a secondary battery.
摘要:
A method of treating the surface of a positive electrode active material that is capable of inhibiting a reaction at the interface between a sulfide-based solid electrolyte and the positive electrode active material. A positive electrode active material particle for sulfide-based all-solid-state batteries, the surface of which is reformed, using the method and a sulfide-based all-solid-state battery, the charge/discharge characteristics of which are improved, including the same are also disclosed. The positive electrode active material particle for sulfide-based all-solid-state batteries manufactured using a dry-type method exhibits larger capacity than a positive electrode active material particle for sulfide-based all-solid-state batteries manufactured through a conventional wet-type process. In addition, the manufacturing process is simplified, and the amount of byproducts is reduced.
摘要:
The present invention provides a lithium secondary battery, including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a separator provided between the positive electrode and the negative electrode, wherein the negative electrode active material may include a titanium-based composite, wherein, when the lithium secondary battery is charged to SOC 50 under C-rate conditions of 0.1 to 40 C, the titanium-based composite has a ratio of the peak area of a plane (400) and the peak area of a plane (111) of 0.76 or more in a measured X-ray diffraction spectrum (XRD). Therefore, the present invention may provide a lithium secondary battery having excellent output characteristics and a battery pack in which a BMS prediction algorithm is simplified.
摘要:
Provided is a positive electrode active material for a lithium secondary battery, the positive electrode active material being a secondary particle formed by agglomerating a plurality of polycrystalline primary particles including a lithium composite metal oxide of Chemical Formula 1, wherein an average crystallite size of the primary particle is 180 to 400 nm, an average particle size D50 of the primary particle is 1.5 to 3 μm, and the primary particle is doped or surface-coated with at least one element M selected from the group consisting Al, Ti, Mg, Zr, Y, Sr, and B in an amount of 3,800 to 7,000 ppm: Lia(NixMnyCozAw)O2+b [Chemical Formula 1] in Chemical Formula 1, A, b, x, y, z, and w are the same as defined in the present specification.
摘要:
Disclosed is a device for continuously preparing an inorganic slurry by a hydrothermal method including a precursor liquid or slurry stream containing a precursor for preparing an inorganic substance, a supercritical liquid stream containing high-temperature and high-pressure water, and a reactor into which the precursor liquid or slurry stream and the supercritical liquid stream are injected, and from which an inorganic slurry obtained as a reaction product of hydrothermal reaction between the precursor liquid or slurry stream and the supercritical liquid stream is continuously discharged, wherein an injection direction of the precursor liquid or slurry stream forms an angle of 0 to 60 degrees with respect to a discharge direction of an inorganic slurry stream (inorganic substance stream) containing the inorganic slurry in the reactor.
摘要:
The present invention relates to an electrode of a double-layer structure including a different type of particulate active material having a different average particle diameter, and a secondary battery including the same, and according to the present invention, the mechanical strength and stability of the electrode increases, and the secondary battery to which they are applied exhibits excellent discharge capacity.
摘要:
The present invention relates to a positive electrode active material for a secondary battery which includes a lithium composite transition metal oxide including nickel (Ni), cobalt (Co), and manganese (Mn), wherein the lithium composite transition metal oxide includes the nickel (Ni) in an amount of 65 mol % or more and the manganese (Mn) in an amount of 5 mol % or more based on a total amount of transition metals, and wherein the electrode positive active material is composed of a single particle, having a crystallite size of 180 nm or more.
摘要:
The present invention provides a positive electrode active material for a lithium secondary battery including a core including first lithium cobalt oxide, and a surface modifying layer positioned on a surface of the core. The surface modifying layer includes a lithium compound discontinuously distributed on the surface of the core, and second lithium cobalt oxide distributed while making a contact with or adjacent to the lithium compound, with a Li/Co molar ratio of less than 1. The positive electrode active material according to the present invention forms a lithium deficient structure in the positive electrode active material of lithium cobalt oxide and changes two-dimensional lithium transport path into three-dimensional path. The transport rate of lithium ions may increase when applied to a battery, thereby illustrating improved capacity and rate characteristic without decreasing initial capacity.