Abstract:
A display apparatus includes a display panel including data lines extending in a first direction, gate lines extending in a second direction which differs from the first direction, and unit pixels connected to the data lines and the gate lines, wherein each of the unit pixels includes a white pixel and a plurality of color pixels, an nth white pixel arranged at an nth position among white pixels arranged in the first direction is connected to an odd white data line (where n is an odd number), and an n+1th white pixel arranged at an n+1th position among white pixels arranged in the first direction is connected to an even white data line.
Abstract:
A display device and a method of driving the same. Characteristics of driving transistors disposed in subpixels of a display panel are sensed and compensated for, thereby improving the image quality of the organic light-emitting display device. Changes in a data voltage between a point in time at which a blank period starts and a period in which the sensing of the driving transistors starts are reduced or minimized, thereby reducing deviations in the sensing of the characteristics of the driving transistors.
Abstract:
A display device includes a display panel having a plurality of gate lines, a plurality of data lines, and a plurality of subpixels; a gate driver circuit driving the plurality of gate lines; a data driver circuit driving the plurality of data lines; and a timing controller controlling signals applied to the gate driver circuit and the data driver circuit, wherein the timing controller controls the data driver circuit for a black data to be applied to at least one of designated subpixels among the plurality of subpixels, and controls the gate driver circuit for a gate signal, which is a signal for sensing a characteristic of a driving transistor of the designated subpixel, to be applied in an interval between times at which the black data are applied, such that the gate signal does not overlap the black data.
Abstract:
A display device includes: a display panel having a plurality of sub-pixels sharing a single reference voltage line, each of the sub-pixels comprising a switching transistor, a driving transistor, a sensing transistor, a storage capacitor, and a light-emitting element; a data driver configured to supply a data voltage to the plurality of sub-pixels; a gate driver configured to supply a gate signal to the plurality of sub-pixels; a timing controller configured to control the data driver and the gate driver; and a detector configured to sense a threshold voltage and mobility of the driving transistor to detect if there is a short-circuit between a gate electrode and an output terminal of the driving transistor.
Abstract:
In a display device, an edge portion of a pixel electrode is modified. A valley is provided in an overcoat layer located below the pixel electrode. The edge portion of the pixel electrode is configured to be curved or bent onto the overcoat layer. As a result, the aperture ratio of the display device can be increased, and an image abnormality in the edge portion of the pixel electrode can be prevented.
Abstract:
A display device can include a display panel, in which a subpixel including a transistor where data lines and gate lines intersect, is disposed; a gate driving unit that sequentially outputs a gate signal to the gate lines; a data driving unit that outputs a data voltage to the data lines according to the gate signal provided to each gate line, and outputs to the data lines during a blank time before a specific frame, data voltages having an output waveform that is identical to data voltages of at least one gate line of the specific frame; and a timing controller that controls the gate driving unit and the data driving unit, and performs a pixel compensation which changes da a provided to each subpixel.
Abstract:
Disclosed are a transistor structure for a display and an organic light emitting display device. The transistor structure includes: a voltage line positioned in one direction and configured to supply voltage to pixels; and two or more transistors which share one of drains and sources which are formed integrally with the voltage line and respectively include the other of the drains and sources which are individually formed and connected with different nodes directly or through a connection pattern.