Abstract:
Organic light-emitting display is disclosed. The organic light-emitting display includes a first substrate, a semiconductor layer positioned on the first substrate, a first insulating layer positioned on the semiconductor layer, a gate metal layer positioned on the first insulating layer, a second insulating layer with a contact hole exposing part of the gate metal layer, a source-drain metal layer positioned on the second insulating layer and electrically connected to the gate metal layer via the contact hole, a third insulating layer positioned on the source-drain metal layer, a fourth insulating layer positioned on the third insulating layer, and a pixel electrode positioned on the fourth insulating layer, wherein the fourth insulating layer fully covers the contact hole, and a stepped portion of the pixel electrode caused by the fourth insulating layer is spaced apart from the contact hole.
Abstract:
Organic light-emitting display is disclosed. The organic light-emitting display includes a first substrate, a semiconductor layer positioned on the first substrate, a first insulating layer positioned on the semiconductor layer, a gate metal layer positioned on the first insulating layer, a second insulating layer with a contact hole exposing part of the gate metal layer, a source-drain metal layer positioned on the second insulating layer and electrically connected to the gate metal layer via the contact hole, a third insulating layer positioned on the source-drain metal layer, a fourth insulating layer positioned on the third insulating layer, and a pixel electrode positioned on the fourth insulating layer, wherein the fourth insulating layer fully covers the contact hole, and a stepped portion of the pixel electrode caused by the fourth insulating layer is spaced apart from the contact hole.
Abstract:
An array substrate for a liquid crystal display and a method for manufacturing the same are disclosed. The array substrate for a liquid crystal display includes a source electrode and a drain electrode and an organic insulating film positioned on the source electrode and the drain electrode. The organic insulating layer includes a first contact hole exposing the drain electrode, and having a stepped level difference formed on the sloping surface of the first contact hole.
Abstract:
Discussed is a display device capable of reducing a number of contact holes and thus improving a aperture ratio, in a structure in which a power line is branched so that power is supplied by the branch line to a thin-film transistor. Further, a method for manufacturing the same is discussed. To this end, in the branch line, a contact-hole is not formed adjacent to the driving thin-film transistor, while a contact-hole is formed only adjacent to the power line VDD/Ref. A dual line of the branch line composed of an active layer and a molybdenum-titanium layer extends from the contact-hole to the driving thin-film transistor, so that the power is supplied to the driving thin-film transistor through the molybdenum-titanium layer MoTi.
Abstract:
Organic light-emitting display is disclosed. The organic light-emitting display includes a first substrate, a semiconductor layer positioned on the first substrate, a first insulating layer positioned on the semiconductor layer, a gate metal layer positioned on the first insulating layer, a second insulating layer with a contact hole exposing part of the gate metal layer, a source-drain metal layer positioned on the second insulating layer and electrically connected to the gate metal layer via the contact hole, a third insulating layer positioned on the source-drain metal layer, a fourth insulating layer positioned on the third insulating layer, and a pixel electrode positioned on the fourth insulating layer, wherein the fourth insulating layer fully covers the contact hole, and a stepped portion of the pixel electrode caused by the fourth insulating layer is spaced apart from the contact hole.
Abstract:
An array substrate for a liquid crystal display and a method for manufacturing the same are disclosed. The array substrate for a liquid crystal display includes a source electrode and a drain electrode and an organic insulating film positioned on the source electrode and the drain electrode. The organic insulating layer includes a first contact hole exposing the drain electrode, and having a stepped level difference formed on the sloping surface of the first contact hole.