Abstract:
In a Line On Glass (LOG) type Liquid Crystal Display (LCD) device and a method of fabricating the same, LOGs and Outer Lead Bonding (OLB) lines are designed in a parallel structure, and a structure of contact holes within Flexible Printed Circuit (FPC) pads and bumpers of Integrated Circuits (ICs) changes, so as to prevent a broken fault due to corrosion and scratch, resulting in improvement of quality of an image displayed on the LCD device.
Abstract:
An array substrate for the liquid crystal display device, the array substrate includes: a first insulating film pattern on an insulating substrate and having an opening; a first light shielding film pattern on the first insulating film pattern including the opening; a gate insulating film over the entire surface of the insulating substrate including the first light shielding film pattern; an active layer on top of the gate insulating film and overlapping the first light shielding film pattern; a pixel electrode on top of the gate insulating film to be separated from the active layer; a source electrode and a drain electrode on top of the active layer, the drain electrode being separated from the source electrode and directly connected to the pixel electrode; a passivation film over the entire surface of the insulating substrate including the source electrode and the drain electrode; a second insulating film pattern on top of the passivation film and overlapping the first light shielding film pattern; a second light shielding film pattern on the second insulating film pattern; and a plurality of divided common electrodes on top of the passivation film and overlapping the pixel electrode.
Abstract:
An array substrate for the liquid crystal display device, the array substrate includes: a first insulating film pattern on an insulating substrate and having an opening; a first light shielding film pattern on the first insulating film pattern including the opening; a gate insulating film over the entire surface of the insulating substrate including the first light shielding film pattern; an active layer on top of the gate insulating film and overlapping the first light shielding film pattern; a pixel electrode on top of the gate insulating film to be separated from the active layer; a source electrode and a drain electrode on top of the active layer, the drain electrode being separated from the source electrode and directly connected to the pixel electrode; a passivation film over the entire surface of the insulating substrate including the source electrode and the drain electrode; a second insulating film pattern on top of the passivation film and overlapping the first light shielding film pattern; a second light shielding film pattern on the second insulating film pattern; and a plurality of divided common electrodes on top of the passivation film and overlapping the pixel electrode.