Abstract:
An organic light-emitting display device having a signal line that is shared by a first column of pixels and a second column of pixels to transmit a data signal and a sensing signal. The organic light-emitting display device includes a plurality of columns of pixels, and a plurality of signal lines extending between the plurality of columns of pixels. Each of the plurality of signal lines is configured to transmit a data signal from a data driver to the first column of pixels at first times. The data signals control the operation of an organic light-emitting element in the first column of pixels. The same signal line transmits a sensing signal from the second column of pixels to the data driver at second times. The sensing signal represents a variable property of an electrical component in a pixel of the second column of pixels.
Abstract:
Discussed is an organic light emitting display device. The organic light emitting display device in one embodiment includes a plurality of pixels configured to each include an organic light emitting device which emits light with a data current, and a pixel circuit that includes a driving transistor which supplies the data current, which is based on a difference voltage between a data voltage and a reference voltage, to the organic light emitting device, a plurality of data lines configured to respectively supply a plurality of the data voltages to the plurality of pixels, a plurality of gate lines configured to supply a gate signal to the pixels, and a plurality of reference lines connected to at least one of the pixels, and configured to supply the reference voltage to the connected pixel. The reference voltage is varied according to data of a pixel connected to a corresponding reference line.
Abstract:
Discussed is an organic light emitting display device. The organic light emitting display device includes a first substrate configured to include an active area including a plurality of pixels and upper, lower, left, and right inactive areas defined near the active area, and a second substrate facing-coupled to the first substrate. The first substrate includes a plurality of data lines and a plurality of gate lines formed in the active area, a plurality of driving power lines formed in parallel with the plurality of data lines to supply a driving voltage to the pixels, a cathode electrode layer connected to the pixels in common to supply a cathode voltage to the pixels, a plurality of driving power pads provided in each of the upper and lower inactive areas, and a plurality of cathode connection parts provided in each of the left and right inactive areas.
Abstract:
An organic light-emitting display device having a signal line that is shared by a first column of pixels and a second column of pixels to transmit a data signal and a sensing signal. The organic light-emitting display device includes a plurality of columns of pixels, and a plurality of signal lines extending between the plurality of columns of pixels. Each of the plurality of signal lines is configured to transmit a data signal from a data driver to the first column of pixels at first times. The data signals control the operation of an organic light-emitting element in the first column of pixels. The same signal line transmits a sensing signal from the second column of pixels to the data driver at second times. The sensing signal represents a variable property of an electrical component in a pixel of the second column of pixels.
Abstract:
A display device according to an exemplary embodiment of the present disclosure includes a light emitting diode and a pixel driving circuit which drives the light emitting diode, the pixel driving circuit includes a driving transistor which applies a driving current to the light emitting diode, a first transistor which applies a first reference voltage to a gate electrode of the driving transistor, a second transistor which applies a data voltage to the gate electrode of the driving transistor, a third transistor which applies a second reference voltage to a source electrode of the driving transistor, and a storage capacitor connected to the gate electrode and the source electrode of the driving transistor. According to the present disclosure, the threshold voltage Vth and the mobility of the driving transistors are internally compensated to improve an image quality.
Abstract:
An organic light emitting display device is discussed. The organic light emitting display device includes a first substrate including an active area that includes a plurality of pixels, and including upper, lower, left, and right inactive areas. The first substrate includes a plurality of data lines and a plurality of gate lines; a plurality of driving power lines; a cathode electrode layer; a plurality of driving power pads; a plurality of cathode connection parts provided in each of the left and right inactive areas; a first common driving power line; a second common driving power line; and a plurality of cathode power pads. Each of the first and second common driving power lines includes a plurality of divided common division lines. The plurality of driving power lines are grouped into a plurality of driving power line groups to be connected to a corresponding common division line.
Abstract:
An organic light emitting display including a display panel having pixels coupled to data lines and first power voltage lines. Each of the pixels includes an organic light emitting diode; a driving transistor coupled to the organic light emitting diode and the first power voltage lines; a first transistor coupled to the data lines and a gate electrode of the driving transistor; a second transistor configured to supply a reference voltage of the data lines to a source electrode of the driving transistor; and a capacitor coupled to the gate and source electrodes of the driving transistor.
Abstract:
Disclosed is an organic light-emitting display device defined into a non-display area and a display area which is provided with pixels. Each of the pixels includes: first through fourth nodes; an organic light emission element connected to the fourth node; a drive transistor disposed between the second, third, and fourth nodes and configured to generate a drive current which drives the organic light emission element to emit light; a storage capacitor disposed between the first and third nodes; first through fifth transistors; wherein the fifth transistor is disposed between the second node with the non-display area and a reference voltage line and configured to control an initialization of the second node.