Abstract:
An electroluminescence display is provided. The electroluminescence display comprises data lines and gate lines intersecting each other and pixels arranged in a matrix, wherein each of subpixels of each pixel comprises: a first driver configured to drive a light-emitting element by using a first EM switching element, which switches the current path between a power supply line to which a pixel driving voltage is applied and the light-emitting element in response to a first light-emission control signal, and a first driving element connected between the first EM switching element and the light-emitting element; and a second driver configured to drive the light-emitting element by using a second EM switching element, which switches the current path between the power supply line and the light-emitting element in response to a second light-emission control signal, and a second driving element connected between the second EM switching element and the light-emitting element.
Abstract:
A display device is provided in which each subpixel includes a driving TFT, an organic light-emitting diode, and at least one switching TFT for driving the subpixel. At least one of the driving TFT and the switching TFT is formed as a double-gate TFT having a first gate node and a second gate node, and each subpixel comprises a compensation circuit that senses a threshold voltage of the double-gate TFT and applies the same to the first gate node or the second gate node of the double-gate TFT.
Abstract:
A display apparatus includes a liquid crystal display (LCD) panel and a backlight coupled to the LCD panel. The LCD apparatus is capable of being operated in a plurality of modes. The gradation values of the image data is adjusted in accordance with gradation ranges, each gradation range having an upper limit gradation value and a lower limit gradation value. The first converted image data is then scaled by applying a scaling factor, followed by adjustment of backlight brightness. The frame rate of the LCD apparatus is also adjusted to implement the operation mode.
Abstract:
A display device is disclosed. The display device includes subpixels including data lines, scan lines, and one or more thin film transistors (TFTs). The display device includes a second switching TFT configured to output a reference signal input through a drain node to a source node according to a second scan signal input through a gate node, a first switching TFT configured to have a drain node connected to the source node of the second switching TFT, and form a current path such that the reference signal input through the drain node is transmitted to the data line according to a first scan signal input to a gate node, and an integrated circuit (IC) unit configured to sense a voltage of a current transmitted to the data line through the first switching TFT and sense a threshold voltage of the first switching TFT based on the sensed voltage.
Abstract:
An image processing method and apparatus using the image processing method are provided. The apparatus comprises a processor configured to scale color values of input image data, thereby simulating the optical characteristics of paper. The simulation takes into consideration varying ambient light conditions around the display to imitate the optical characteristics of physical paper in the same ambient light conditions.
Abstract:
A display apparatus includes a liquid crystal display (LCD) panel and a backlight coupled to the LCD panel. The LCD apparatus is capable of being operated in a plurality of modes. The gradation values of the image data is adjusted in accordance with gradation ranges, each gradation range having an upper limit gradation value and a lower limit gradation value. The first converted image data is then scaled by applying a scaling factor, followed by adjustment of backlight brightness. The frame rate of the LCD apparatus is also adjusted to implement the operation mode.
Abstract:
An image processing method and apparatus using the image processing method are provided. The apparatus comprises a processor configured to scale color values of input image data, thereby simulating the optical characteristics of paper. The simulation takes into consideration varying ambient light conditions around the display to imitate the optical characteristics of physical paper in the same ambient light conditions.