Abstract:
A touch recognition enabled display panel includes a plurality of common electrode blocks serving as touch-sensing regions and/or touch-driving regions. Conductive lines connected to the common electrode blocks are placed under the common electrode blocks and the pixel electrodes of the pixels, and they are routed across the active area, directly toward an inactive area where drive-integrated circuits are located. The conductive lines are positioned under one or more planarization layers, and are connected to the corresponding common electrode blocks via one or more contact holes.
Abstract:
A touch recognition enabled display panel includes a plurality of common electrode blocks serving as touch-sensing regions and/or touch-driving regions. Conductive lines connected to the common electrode blocks are placed under the common electrode blocks and the pixel electrodes of the pixels, and they are routed across the active area, directly toward an inactive area where drive-integrated circuits are located. The conductive lines are positioned under one or more planarization layers, and are connected to the corresponding common electrode blocks via one or more contact holes.
Abstract:
A liquid crystal display panel includes features to prevent damage to the liquid crystal alignment layer when a color filter substrate and a thin-film transistor array substrate are moved relative to each other. The liquid crystal display panel may include a column spacer on the color filter substrate under the black matrix and a bump pattern on the array substrate where the column spacer and the bump pattern are in contact with each other. The array substrate may otherwise include a planarization layer with a step portion and a protective layer on the planarization layer where the protective layer is in contact with the column spacer.
Abstract:
A display of an electric device includes a plurality of separated transparent electrode blocks, which are configured to provide one or more of supplemental features such as touch recognition. Signal paths between the transparent electrode blocks and the driver for the supplemental feature are implemented with a plurality of conductive lines placed under positioned under one or more planarization layers. The conductive lines implementing the signal paths are routed across the display area, directly toward a non-display area where drive-integrated circuits are located.
Abstract:
A display of an electric device includes a plurality of separated transparent electrode blocks, which are configured to provide one or more of supplemental features such as touch recognition. Signal paths between the transparent electrode blocks and the driver for the supplemental feature are implemented with a plurality of conductive lines placed under positioned under one or more planarization layers. The conductive lines implementing the signal paths are routed across the display area, directly toward a non-display area where drive-integrated circuits are located.
Abstract:
A liquid crystal display device is provided. The liquid crystal display device includes a first substrate having elements configured to drive pixels; a second substrate having color filters corresponding to the pixels; and a sealant configured to bond the first substrate and the second substrate to each other. The first substrate includes a first protruding structure located in an area in contact with the sealant and the second substrate includes a second protruding structure located in an area in contact with the sealant.
Abstract:
A display device according to an embodiment includes a lower substrate in which a display area and a non-display area are divided and an upper substrate which corresponds to the lower substrate and includes a black matrix BM. Further, the display device can include a bezel which is located on the non-display area and includes a GIP driver, a plurality of signal transmission lines, a connection line connecting the GIP driver and the plurality of signal transmission lines, and a seal area equipped with a sealant, in a direction being apart from one side of the display area, a plurality of bridge patterns which is located on the non-display area and electrically connects the GIP driver and the connection line, and the connection line and the plurality of signal transmission lines, respectively, and a plurality of shield patterns enclosing the plurality of bridge patterns. Also, the display device can include a plurality of shield patterns which minimize an area in which the sealant and the plurality of bridge patterns are in directly contact with each other.