Abstract:
A driver assistance apparatus includes an interface configured to receive first navigation information generated based on GPS information of the vehicle, a camera configured to acquire an image of a view ahead of the vehicle, and a processor. The processor is configured to detect an object in the acquired image of the view ahead of the vehicle, determine, based on the detected object, a driving situation of the vehicle, and determine whether the driving situation of the vehicle is consistent with the first navigation information. Based on a determination that the driving situation of the vehicle is not consistent with the first navigation information, the process generates, based on the driving situation of the vehicle, second navigation information of the vehicle, and provides the second navigation information to an output unit.
Abstract:
A vehicle control device includes a plurality of lamps provided on a vehicle; a sensing unit configured to sense information related to the vehicle; and at least one processor. The at least one processor is configured to, based on a determination, through the sensing unit, that at least a portion of the vehicle has entered a first area that is adjacent to an available parking space, activate, in a first illumination mode, at least one lamp among the plurality of lamps that has entered the first area that is adjacent to the available parking space.
Abstract:
A vehicle that includes: an input device that is configured to receive a user command from a user; and a controller that is configured to: obtain vehicle driving information, based on the vehicle driving information, control the vehicle to travel autonomously, determine whether the user command is inconsistent with the vehicle driving information, based on a determination that the user command is inconsistent with the vehicle driving information, determine to ignore the user command, in response to a determination to ignore the user command, control the vehicle based on the vehicle driving information without the user command, based on a determination that the user command is consistent with the vehicle driving information, determine to apply the user command, and in response to a determination to apply the user command, control the vehicle based on the vehicle driving information and the user command is disclosed.
Abstract:
A vehicle that includes: an input device that is configured to receive a user command from a user; and a controller that is configured to: obtain vehicle driving information, based on the vehicle driving information, control the vehicle to travel autonomously, determine whether the user command is inconsistent with the vehicle driving information, based on a determination that the user command is inconsistent with the vehicle driving information, determine to ignore the user command, in response to a determination to ignore the user command, control the vehicle based on the vehicle driving information without the user command, based on a determination that the user command is consistent with the vehicle driving information, determine to apply the user command, and in response to a determination to apply the user command, control the vehicle based on the vehicle driving information and the user command is disclosed.
Abstract:
A lamp of an autonomous vehicle may include at least one light emitting unit. The lamp may further include at least one processor configured to: in a first state in which the autonomous vehicle is operating in a manual driving state, control the at least one light emitting unit to emit a light into a space outside the autonomous vehicle; and in a second state in which the autonomous vehicle is transitioned from the manual driving state to an autonomous driving state, control the at least one light emitting unit to not emit a light into the space outside the autonomous vehicle.